
1

Gaming on Coincident Peak Shaving:

Equilibrium and Strategic Behavior
Liudong Chen, Bolun Xu

Earth and Environmental Engineering, Columbia University

{lc3671, bx2177}@columbia.edu

500 W 120th Street, NYC, NY, 10027, USA

Abstract

Coincident peak demand charges are imposed by power system operators or electric utilities when the

overall system demand, aggregated across multiple consumers, reaches its peak. These charges incentivize

consumers to reduce their demand during peak periods, a practice known as coincident peak shaving. In

this paper, we analyze the coincident peak shaving problem through the lens of game theory, developing a

theoretical model to examine the impact of strategic consumer behavior on system efficiency. We demon-

strate that the game structure exhibits varying characteristics—concave, quasiconcave/discontinuous, or

non-concave/discontinuous—depending on the extent of consumers’ demand-shifting capabilities. For a

two-agent, two-period setting, we derive closed-form Nash equilibrium solutions under each condition

and generalize our findings to cases with multiple agents. We prove the stability of the equilibrium points

and present an algorithm for computing equilibrium outcomes across all game scenarios. We also show

that the peak-shaving effectiveness of the game model matches that of the centralized peak-shaving model

but with increased levels of anarchy. In the cases of quasi-concave and non-concave game conditions, we

analytically demonstrate in the two-agent setting that anarchy increases with consumers’ flexibility and

inequity, as measured by their marginal shifting costs, and we also analyze the influence of the number

of agents on anarchy. Finally, we provide numerical simulations to validate our theoretical results.

Index Terms

Coincident peak shaving, Betting game, Price of anarchy, Equilibrium stability, Demand response,

Power system operation

I. INTRODUCTION

The operation and economics of power systems are highly influenced by peak demand due to the

real-time supply and demand balance requirements. Generator investments must cover peak demand, and
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operations need to consider the ramp rates induced by peak demand [1]. A notable example is the duck

curve observed in California, USA, where solar energy generation creates a net load (or the demand

remaining after subtracting variable renewable generation) valley during the daytime. However, because

peak demand occurs at night and solar generation drops sharply, the net load increases dramatically and

quickly—nearly 13,000 megawatts in three hours [2]. This rapid ramp rate and the need for higher total

generation investment undermines the economics and efficiency of the power system.

Utilities and load-serving entities have long been providing solutions for peak shaving. A traditional

approach is direct load control, where utilities sign contracts with consumers to gain access to large

appliances and cycle them during peak periods, offering financial incentives to participating consumers [3].

However, this centralized method is intrusive and raises privacy concerns, making it less suitable in an

era of distributed energy resources (DERs), such as storage units, smart appliances, and electric vehicles.

With DERs, consumers become active participants in operations, strategically adjusting their electricity

usage to minimize costs [4].

In addition to financial incentives, utilities have employed centralized pricing mechanisms, such as

time-of-use (ToU) tariffs [5] and real-time tariffs [6], where the price structure is designed to achieve

the utility’s objectives. Although effective in shifting demand patterns, these methods are less focused on

peak shaving, and the utilities’ revenue recovery is dependent on the consumers’ responsiveness [7], [8].

Another approach involves applying peak demand charges during system peak hours to encourage demand

reduction [9], [10]. However, allocating peak demand charges among consumers remains a challenge, as

the system peak demand does not align directly with individual consumers’ peak demands [11].

Coincident peak (CP) demand charges present a promising alternative, where individual consumers

are billed based on their demand during the system’s peak time. These charges are incorporated into

future electricity bills; for example, the 4CP mechanism in Texas adds charges from four hours of peak

demand in the current year to the following year’s electricity bills, potentially comprising up to 30% of

an organization’s monthly bill [12]. This mechanism provides strong incentives for consumers to reduce

their demand during peak times. However, a significant challenge lies in the fact that the peak time

is realized posteriorly. While many academic and industrial efforts focus on accurately predicting the

system’s peak time [13]–[15], they often overlook the interactions between consumers, whose collective

demands determine the system peak. This gap naturally motivates a game-based framework and raises a

critical question:

Whether the game-based framework is workable for the CP shaving problem, and how does consumers’

strategic behavior in the game environment cause anarchy compared to the centralized method?

In this work, we address this question by formulating a theoretical game framework for the CP shaving
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problem. The framework is sufficiently rich to capture the salient decision-making behavior of individual

consumers within the gaming environment, yet simple enough to allow for analytical characterization of

their strategic decisions. Specifically, our contributions are as follows:

• We propose a CP game model with a fixed CP charge price and an individual penalty term for

demand shifting, where all agents compete to determine the CP time and corresponding demand

strategy. We show that the CP game model can exhibit concave, quasi-concave/discontinuous, or non-

concave/discontinuous structures, depending on the agents’ demand-shifting capabilities. In contrast,

the widely used centralized peak shaving model is a trivial convex optimization problem.

• We analytically derive the Nash equilibrium (NE) for a two-agent, two-period setting under all

CP game structures. Our analysis reveals that the NE is determined by the system’s unbalanced

demand and the agents’ maximum shifting capabilities. By treating the system as a switched dynamic

system, we prove that the equilibrium of the game model is globally uniformly asymptotically stable,

regardless of switching, provided all agents’ demands are non-negative. Furthermore, we demonstrate

that a gradient-based algorithm with an update rule serving as a finite difference approximation of

the asymptotically stable process can compute the equilibrium point.

• We analyze the impact of gaming agents’ strategic behaviors by examining the peak shaving effec-

tiveness and the price of anarchy (PoA). Our findings analytically indicate that the peak shaving

effectiveness of the game model matches that of the centralized model but comes at the cost

of economic inefficiency (anarchy), except for the concave game, where the outcomes are fully

equivalent. For quasiconcave and non-concave games, we prove that the PoA increases with the

inequality among agents, as measured by their marginal shifting costs. Additionally, under identical

system conditions, we show that greater agent flexibility exacerbates PoA by altering the game type.

• Extending our analysis to multi-agent settings, we prove the unique NE under concave and quasi-

concave conditions. For non-concave CP games, we demonstrate that system demand can still be

balanced over two periods, deriving the NE for a subset of agents. We also establish the stability of

the equilibrium point and validate the effectiveness of the gradient-based algorithm. The NE reveals

equivalent peak shaving effectiveness between the game and the centralized model while showing

that changes in the number of agents influence the game type and, consequently, the PoA.

A. Related works

To precisely position our study within the gap in the existing literature, we elaborate on our work

from three perspectives closely related to the peak shaving problem: (i) Centralized peak shaving, (ii)

CP demand charge, and (iii) Betting game.
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Centralized peak shaving. Many studies address the peak shaving problem from the utility’s per-

spective, formulating it as a centralized optimization problem aimed at minimizing costs or maximizing

profits. In such models, pricing mechanisms, including tariffs or peak demand charges, are treated as

decision variables [16]. This centralized formulation is straightforward to solve, as it typically results in

a convex problem when the cost function is convex and the revenue function is concave [17]. Centralized

approaches often rely on accurately modeling consumers’ price response behavior to determine the optimal

pricing scheme. This leads to a two-layer framework: the upper layer determines the price, while the

lower layer models demand based on consumers’ price response behavior [18]. The lower layer may

involve constructing utility functions to represent consumer preferences [19], [20] or using data-driven

methods to learn behavior from historical price and consumption data. However, capturing consumer

price response behavior accurately in centralized models is challenging because consumer preferences

are highly complex [21] and are influenced by dynamic environmental factors [22]. These factors are

difficult to represent with a single model or dataset. Moreover, the centralized approach primarily focuses

on reducing system peak demand and recovering utility revenue, often overlooking the individual benefits

for consumers. This limitation motivates the adoption of a distributed approach that emphasizes consumer

participation in peak shaving.

CP demand charge. The CP demand charge, which considers peak demand charges from both

consumer and system perspectives, is an efficient method for peak shaving. Academic and industrial

solutions for CP shaving generally focus on prediction and decision-making. Prediction involves esti-

mating CP time as a probabilistic distribution, often using machine learning tools that leverage input

features such as historical demand and weather conditions [14], [23]. Following this, decisions are

made based on the prediction results. Industrial solutions primarily emphasize short-term historical data

prediction, employing auto-regressive methods to iteratively update models and issue warning signals to

consumers [15]. Academic solutions typically frame the problem as a scheduling task, making deliberate

decisions based on CP time distributions. Examples include stochastic sequential optimization [24] and

optimization with neural networks trained as decision policies [25]. Recently, an approach combining

prediction and decision-making, termed ’decision-focused learning’ or contextual optimization [26], has

gained traction. This method trains weighting parameters using decision losses rather than prediction

losses, aligning with downstream optimization tasks to produce effective decisions [27]. However, it has

yet to be applied to the CP shaving problem. Moreover, existing studies often assume a single agent or

’price-taker’ condition, neglecting the impact of agents’ decisions on CP time predictions. This motivates

us to incorporate consumer interactions as a critical aspect of CP shaving design.

Betting game. Without considering specific constraints, the CP shaving problem can be abstracted as
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players betting on discrete events, with winners sharing benefits based on their bids. This aligns with the

classic concept of Pari-mutuel betting, where odds—analogous to peak times—vary with all betting strate-

gies [28], [29]. A common application of Pari-mutuel betting is in sports events, where optimal betting

strategies (size and target) are determined by solving discrete decision problems to maximize expected

returns through the best picks combination [30], [31]. When multiple games occur simultaneously, the

problem becomes an asset allocation problem, requiring combinatorial apportionment of resources [32],

[33]. If time factors are introduced and the game is played sequentially, the problem evolves into a

prediction market, where players iteratively gather information to refine decision policies [34], [35].

However, this is beyond our study’s scope. These works provide valuable game frameworks that help

establish a basic understanding of gaming in CP shaving. However, the constrained nature of our problem

sets it apart from classic betting problems. Specifically, shifting demand negatively impacts consumer

comfort and incurs profit loss, the total demand required to remain unchanged, and the outcomes of

discrete events only depend on the strategies of all players, without any exogenous uncertainty. We fill

the gaps in the literature by embedding these constraints into our model and formulating the CP shaving

game framework.

The remaining of the paper is organized as follows: Section II introduces the model formulation and

preliminary definitions, Section III analyzes the game property determined by agents’ parameters and

shows the Nash equilibrium structure under the two-agent setting, Section IV analyzes the stability of the

equilibrium point and proves a global convergence of a gradient-based algorithm. Section V studies the

impact of gaming agents’ strategic behavior on peak shaving effectiveness and PoA. Section VI extends

the two-agent setting to a multi-agent setting. Section VII provides the case study, and Section VIII

concludes the paper.

II. MODEL AND PRELIMINARIES

In this section, we formulate the CP shaving game model and introduce the definitions. We consider

two agents (consumers) gaming to reduce CP demand while maximizing their payoff in a two-period

system. The CP game model is defined as G = (N,X , U), where

• N = {i,−i} is the two-agent player set, and i, −i are interchangeable. This notation is only for

two agents, while in the multi-agent setting, which we will introduce in Section VI, −i denotes all

players but i.

• X = Xi×X−i is the strategy set formed by the product topology of each agent’s strategy set Xi,X−i,

where × is the topology product;

• U = {fi, f−i} is the payoff function set, where fi, f−i : X → R.
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During the game, agent i chooses strategy xi ∈ Xi to maximize its payoff fi(xi, x−i) with x−i ∈ X−i,

and the payoff is to minimize its two periods’ costs,

max
xi

fi(xi, x−i) = −π(Xi,1 + xi)I(S1(x)− S2(x))− π(Xi,2 − xi)I(S2(x)− S1(x))− αix
2
i , (1a)

I(x) =

1 x ≥ 0

0 x < 0

, (1b)

S1(x) = Xi,1 +X−i,1 + xi + x−i = S1,0 + xi + x−i, (1c)

S2(x) = Xi,2 +X−i,2 − xi − x−i = S2,0 − xi − x−i, (1d)

xi ∈ Xi = R, x−i ∈ X−i = R (1e)

where Xi,1, Xi,2 ∈ R+ are the baseline demand for agents i at time 1 and 2; xi are the strategy (shiftable

demand) for agents i, and we use x as a vector (without any index) to denote two agents’ counterparts;

S1, S2 are the system demands at time 1 and 2, which is a function of x, and in most cases, we omit the

x when there is no ambiguity; S1,0, S2,0 is the system baseline demands; π ∈ R+ is a fixed CP charge

price; I(x) is the step function (indicator function). αi ∈ R+ is the penalty parameter for agent i when

shifting demand, which expresses the comfort loss or any perceptive cost by shifting demand. Note that

we focus on demand shifting and assume a constant energy rate besides the peak demand charge so we

don’t consider the energy cost.

It is obvious that the game is compact, convex, and bounded, where compact means each Xi is compact,

convex means each Xi is convex, and bounded means each fi is bounded. Note that we use a quadratic

penalty to express a soft constraint to make the strategy set compact, and we have the linear correlation

of the number of variables and agents. We then introduce the definitions of equilibrium and continuity.

Definition 1. We define the following: (1) Pure-strategy Nash equilibrium (Nash [36]). (x∗i , x
∗
−i) ∈ X

is a NE in pure strategies of the game G if and only if (iff) fi(x
∗
i , x

∗
−i) ≥ fi(xi, x

∗
−i) for every xi ∈

Xi, x−i ∈ X−i.

(2) Upper semi-continuity (u.s.c.) and lower semi-continuity (l.s.c.). The function fi : X → R is called

upper semi-continuous (u.s.c.) or lower semi-continuous (l.s.c.) if for every x0 such that

lim sup
x→x0

fi(x) ≤ fi(x0), or lim inf
x→x0

fi(x) ≥ fi(x0), (2)

for all x in some neighborhood of x0, respectively.

The step function makes the game analysis non-trivial. We thus separate the overall system into two

subsystems 1 and 2, corresponding to CP time in 1 and 2, i.e., X1 = {x|S1(x) ≥ S2(x)} and X2 =
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{x|S1(x) < S2(x)}, with the payoff functions

fi,1(xi) = −π(Xi,1 + xi)− αix
2
i , x ∈ X1,

fi,2(xi) = −π(Xi,2 − xi)− αix
2
i , x ∈ X2, (3a)

It is obvious that each payoff function is concave, and by applying the first-order optimality condition [37],

we have

x′i = argmax
xi

fi,1(xi) = − π

2αi
, x ∈ X1,

x′i = argmax
xi

fi,2(xi) =
π

2αi
, x ∈ X2, (3b)

With these results, we define critical points, balance points, and system average demand in the game

model.

Definition 2. Critical points, balance points, and system average demand. We define the following:

1) Critical point ri: the critical point of the payoff function fi,2 described in (3), and it is easy to see

the critical point of the payoff function fi,1 is −ri,

ri =
π

2αi
, (4a)

2) Agent balance point bi: the demand difference of agent i in two time periods

bi =
Xi,2 −Xi,1

2
, (4b)

3) System balance point b: the demand difference of the overall system in two time periods

b = bi + b−i =
S2,0 − S1,0

2
. (4c)

4) System average demand S: the average baseline demand of the overall system in two time periods

is

S =
S2,0 + S1,0

2
. (4d)

The critical point indicates the maximum demand each agent can shift to avoid the CP charge within

one subsystem. The agent balance allows each agent to shave its demand flat in two periods, which is

the economic maximum demand shifting in the entire system. The reason is that once the agent balance

point is reached, the CP charge is constant (half of the demand) regardless of the opponent’s strategy.

Thus, min{ri, bi} or max{−ri, bi} define the maximum shifting capability. The system average demand

is useful to show the CP charge when the system demand is balanced in the two time periods. We then

define the capable and non-capable agents.
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Definition 3. Capable and non-capable agents. According to Definition 2, given agent i with baseline

demand Xi,1, Xi,2, CP charge π, and penalty parameter αi, the agent i is capable if it satisfy

−ri ≤ bi ≤ ri, (5)

Define the agent that didn’t satisfy (5) as non-capable agent, including upper non-capable agent with

bi > ri and lower non-capable agent with bi < −ri.

According to Definition 2, (5) means agent i is economically capable of balancing its demand in the

two periods during the game G to reduce the CP charge. The reason is that the agent’s balance point bi

is within their critical point −ri, ri of both subsystems, indicating that they will reach the balance point

before the critical point when they shift demand.

III. EQUILIBRIUM ANALYSIS OF THE COINCIDENT PEAK GAME

In this section, we first introduce the definition of capable and non-capable agents, then show the

properties of the two-agent two-period CP game G with the specific agent type, and prove the pure-

strategy NE of the CP game.

A. Game properties

We first show the property of CP game G. Determined by the parameters of all agents, the game

performs differently.

Proposition 4. Concave, quasiconcave/discontinuous, and non-concave/discontinuous CP game. Given

critical point ri, r−i and balance point bi, b−i, b as define in Definition 2, the two-agent two-period CP

game G satisfies one of the following:

1) Concave CP game. G is concave that all agents’ payoff function fi(xi, x−i) is concave in xi ∈ Xi

for each x−i ∈ X−i under the conditions of

b < −ri − r−i, if S1,0 ≥ S2,0, (6a)

b > ri + r−i, if S1,0 < S2,0, (6b)

2) Quasiconcave CP game. G is quasiconcave/discontinuous that all agents’ payoff function fi(xi, x−i)

is quasiconcave in xi ∈ Xi for each x−i ∈ X−i [38] under the conditions of

−ri ≤ bi ≤ ri; (6c)
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3) Non-concave CP game. G is non-concave/discontinuous if it is not concave or quasiconcave. The

condition is

{−ri − r−i ≤ b ≤ ri + r−i}∩[{bi < −ri} ∪ {bi > ri} ∪ {b−i < −r−i} ∪ {b−i > r−i}]. (6d)

Sketch of the proof. The payoff function is quadratic if only one subsystem is active during the solution

process, indicating a concave and continuous game. The indicator function discontinues the game when

the subsystem changes in the gaming process. According to the definition of the quasiconcave function,

we separate three cases: 1) Agent i can switch the CP time before reaching their critical points in both

subsystems 1 and 2; 2) Agent i can reach the critical point in subsystem 2 before switching, and the

function is l.s.c. as defined in Definition 1; 3) Agent i can reach the critical point in subsystem 1 before

switching, and the function is u.s.c. as defined in Definition 1. We show only the first case is able for both

agents’ functions to be quasiconcave. The non-concave condition is derived from the complementary set

of concave and quasiconcave conditions. The detailed proof is provided in the appendix.

This Proposition shows the game’s properties depend on the relationship between agent’s critical point

and balance point, affected by baseline demand Xi,1, Xi,2, CP charge parameters π, and shifting penalty

parameters αi. In the concave game conditions with these game properties, all agents can’t change the

CP time together, and only one subsystem is active, determined by S1,0 and S2,0. If all agents are capable

according to Definition 3, the CP game is quasiconcave. Otherwise, when both agents can change the

CP time together, but one is non-capable, the CP game is non-concave. With these game properties, we

then analyze the NE of the CP game G.

B. Nash Equilibrium

In this section, we study the NE of the two-agent two-period CP games in all conditions as described

in Proposition 4. The main theorem is as follows

Theorem 5. NEs in two-agent two-period CP game. Given critical points ri, r−i and balance points

bi, b−i, b as defined in Definition 2, the unique pure-strategy NE (x∗i , x
∗
−i) as defined in Definition 1 of

the two-agent two-period CP game G satisfy one of the following:

1) Concave CP game.

x∗i = −ri, x
∗
−i = −r−i, if bi < −ri, b−i < −r−i − ri − bi; (7a)

x∗i = ri, x
∗
−i = r−i, if bi > ri, b−i > r−i + ri − bi; (7b)
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2) Quasiconcave CP game.

x∗i = bi, x
∗
−i = b−i, if − ri ≤ bi ≤ ri,−r−i ≤ b−i ≤ r−i; (7c)

3) Non-concave CP game.

x∗i = −ri, x
∗
−i = b+ ri, if {−r−i − ri ≤ b ≤ r−i − ri} ∩ {bi < −ri ∪ b−i > r−i} (7d)

x∗i = ri, x
∗
−i = b− ri, if {−r−i + ri ≤ b ≤ r−i + ri} ∩ {bi > ri ∪ b−i < −r−i} (7e)

Sketch of the proof. As discussed in Proposition 4, the CP game G is possible to be concave, quasi-

concave, and non-concave, which makes it hard to do systematic analysis. By the virtue of two-agent

two-period setting, we can comprehensively analyze the NE in all possible conditions. We separate two

cases according to the system CP time determined by S1,0, S2,0, and further separate the cases according

to agents’ own baseline demand Xi,1, Xi,2, then study whether both agents are capable, one of them is

capable, and none of them is capable. The reason is that agents’ best response is to shift demand away

from the CP time when their demand is higher in the CP time, to avoid CP charges, or shift demand

toward the CP time when their demand is lower in the CP time, to maintain the CP time. However, the

shifting capability is determined by their their capability, i.e., the relationship between the critical point

ri and the agent balance point bi. We analyze each conditions and show corresponding NE solutions.

The details are provided in the appendix.

This theorem shows the NE under each concave, quasiconcave, and non-concave CP game type. Note

that the condition described in this theorem aligns with the conditions in Proposition 4, and we write out

individual agent’s conditions along with the NE solutions. Basically, the concave CP game includes two

cases (7a) and (7b), both are aligned with (6a) and (6b) in Proposition 4. The condition of quasiconcave

CP game (7c) is the same to (6c) in Proposition 4. The non-concave CP game conditions (7d) and (7e)

are also aligned with (6d) in Proposition 4.

The NE also describes the relationship of gaming agents as fully cooperative (7a), (7b), fully competitive

(7c), and mixed competitive and cooperative (7d), (7e). Specifically, When they are in a fully cooperative

relationship, they cooperate to shift the demand away from the CP time. Once they can change the CP

time together, they enter a competitive relationship where they compete with each other to change the CP

time, but one agent’s decision is limited by their shifting penalty. When all agents are capable, they are

in a fully competitive relationship that balances their demand regardless of opponents’ strategy. Indeed, if

both agents want to be in a mixed relationship, they must be ’asymmetrical,’ where their shifting penalty

parameters should be different so that they have different shifting limitations. Otherwise, they are either

fully cooperative or fully competitive.
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We also show under the quasiconcave and concave game conditions, agents share the market equally,

i.e., the strategy only depends on their own parameters, regardless of the opponent’s strategy. While

in the non-concave game, the agents’ strategy depends on the opponent’s strategy, and the agent with

x−i = b ∓ ri is more flexible and dominates the other inflexible agent with xi = ±ri and benefit more

through the competition. We denote agents’ flexibility as the maximum relative demand shifts over their

baseline demand difference, i.e., x∗i /bi. Here, x∗i depends on the game type and is influenced by the

shifting penalty parameter α, while bi, as mentioned before, represents the economic maximum shifting

capacity. Thus, flexibility is determined by both α and the baseline demand conditions Xi,1 and Xi,2.

IV. EQUILIBRIUM STABILITY AND ALGORITHM CONVERGENCE

Due to the indicator function in the model (1), the CP game system is a switched dynamics system.

In this section, we first analyze the system stability and then develop a solution algorithm to reach the

stable (equilibrium) point.

A. Equilibrium stability

There are two subsystem dynamics corresponding to CP time 1 and 2, separated by the indicator

function and a switching logic between these two subsystems. According to [39], we consider a reasonable

dynamic model in each subsystem in which each player changes his strategy following the gradient

direction with respect to his strategy of his payoff function, then each player’s payoff will increase

given all other players’ strategies. Denote the dynamic time index with k, and the gradient as F1(x) =

[∇ifi(x),∇−if−i(x)]
T with total differential operator ∇, the dynamics of subsystem 1 (x ∈ X1) is

dx

dk
= ẋ = F1(x) = [−(π + 2αixi),−(π + 2α−ix−i)]

T . (8a)

The subsystem 2, i.e., x ∈ X2, follow the same structure with different gradient F2(x):

dx

dk
= ẋ = F2(x) = [π − 2αixi, π − 2α−ix−i]

T . (9a)

We then denote the CP game system with the switching logic as

ẋ =

F1(x) x ∈ X1

F2(x) x ∈ X2

. (10)

Our goal is to prove the overall CP game system with the switching logic is asymptotically stable.

According to the NE described in Theorem 5, we call x∗ as the equilibrium point of the CP game system

(10) if one of the following is satisfied,

fi,1(x
∗
i ) + f−i,1(x

∗
−i) = fi,2(x

∗
i ) + f−i,2(x

∗
−i), (11a)
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F1(x
∗) = 0, S1,0 ≥ S2,0, (11b)

F2(x
∗) = 0, S1,0 < S2,0. (11c)

Among them, the first condition (11a) corresponding to non-concave CP game (7d) and (7e), and

quasiconcave CP game (7c), where both subsystems have the same CP charges and shifting penalty

because the system demand is balanced in the two periods at NE and the shifting penalty is symmetric

in the two time periods. The second and third (11b) and (11c) conditions correspond to the concave CP

game (7a) and (7b), where the NE is obtained when the subsystem gradient F1 or F2 reaches zero. Then,

we introduce the main stability results.

Theorem 6. Global stability of equilibrium point. The CP game system (10) is global uniform asymp-

totically stable in Xs, where

Xs = {x|αix
2
i + α−ix

2
−i + π(S1,0 + xi + x−i) > 0 ∩ αix

2
i + α−ix

2
−i + π(S2,0 − xi − x−i) > 0}, (12)

i.e., for every starting point x ∈ Xs, the solution x(k) to the CP game system (10) converges to an

equilibrium point x∗ ∈ Xs as k → ∞, where x∗ is the equilibrium point satisfy (11).

Sketch of the proof. The switched system property makes the stability analysis non-trivial. We separate

two steps by first show each subsystem (8) and (9) is asymptotically stable in X . Then, we include

the switching logic and derive multiple Lyapunov functions with continuous properties in the switching

surface to show the CP game system (10) is global uniform asymptotically stable in Xs. After that, we

show the equilibrium (stable) point is obtained with F1 = 0 or F2 = 0 under the condition of concave

CP game, and with fi,1 + f−i,1 = fi,2 + f−i,2 under the condition of quasiconcave or non-concave CP

game. The detailed proof is provided in the appendix.

This Theorem shows the global uniform asymptotically stability of our CP game system in the strategy

set Xs, indicating the CP game G can converge to the equilibrium points for the solution trajectory that

within Xs. It is important to know that Xs covers many scenarios in real operations, which guarantees the

system stability to some extent. For example, the range that guarantees all agents’ demands is non-negative

xi ∈ [−Xi,1, Xi,2], x−i ∈ [−X−i,1, X−i,2] is always within Xs.

With the stability property, our next step is to develop an algorithm to compute the equilibrium point.

B. Algorithm to determine equilibrium point

Given the finite difference approximation to the CP game system dynamics (10) with learning rate

vector τh and gradient Fj

xh+1 = xh + τhFj(xh), j = 1, 2, (13)
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where j is the switching signal taking the value 1 for S1(x) ≥ S2(x) and 2 for S1(x) < S2(x). This

then forms a gradient-based algorithm following the updating rule (13) to gradually reach the equilibrium

point. Among them, the gradient is determined by the subsystem on which the current solution lies, and

the learning rate for each agent i τi,h is determined by its payoff function and gradient. Choosing a

suitable learning rate is key to showing convergence performance, we provide the following Theorem to

determine the learning rate.

Theorem 7. Determination of equilibrium point. Given the finite difference approximation as described

in (13), a finite learning rate vector τh can be selected such that when Xi,1 + xi ≥ Xi,2 − xi

−fi,1(xh) < −fi,1(xh),−fi,2(xh) > −fi,2(xh), (14a)

when Xi,1 + xi < Xi,2 − xi,

−fi,1(xh) > −fi,1(xh),−fi,2(xh) < −fi,2(xh), (14b)

where Fj(xh) ̸= 0, j = 1, 2; h and h is a switched pair that satisfies h < h < h and h = h = j, h ̸= j.

The same will also hold for agent −i.

Sketch of the proof. We use the backtracking line search method [37] to calculate the learning rate, which

is affected by the subsystems of the current and future steps. For the concave game, only one subsystem

will be active during the entire solution process, according to the backtracking line search, the gradient

F1 or F2 will reduce gradually, and combined with Theorem 6, the gradient will reduce to zero and reach

the equilibrium point satisfy (11b) or (11c).

When switching happens, agents’ individual peak times are different, and we analyze the objective

function −fi,1,−fi,2 change following the backtracking line search criteria by judging where the sub-

systems lie in the current and next steps. Given a trajectory starts from subsystem 1 at h, switches to

subsystem 2 at h+1, and back to subsystem 1 at h+2, suppose agent i’s individual peak time is 1, we

then show agent i update its decision xi when switching from subsystem 1 to 2, and agent −i update

its decision x−i when switching from subsystem 2 to 1, i.e., the τ−i,h = 0, τi,h+1 = 0, correspondingly,

agent i’s objective −fi,1 decrease and agent −i’s objective −f−i,2 decrease. The reason for the change is

that their individual peak time aligns with the system’s CP time. Note that this learning rate is determined

by their own payoff functions and gradients, allowing the gradient for agent i to increase its decision

variable while the gradient for agent −i keeps the decision variable. By the same analysis, we know

agent i’s objective −fi,2 increase and agent −i’s objective −fi,1 increase in the trajectory starting from

subsystem 2, switched to subsystem 1, and back to subsystem 2. We then show these results still hold
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when the trajectory stays more steps in one system between two transitions. This proves the reduction

of the distance between objective functions in the two time periods. Combined with Theorem 6, the

entire system finally will satisfy (11a) and reach the equilibrium point. The details are provided in the

appendix.

This Theorem shows that the finite learning rate can be chosen in each step using the backtracking

line search. Following this updating rule (13), combined with Theorem 6, a gradient-based algorithm

can reach the equilibrium point. Specifically, the difference in each agent’s payoff function in the two

subsystems reduces gradually, and depending on whether the game is concave or not, the difference can

be reduced to zero or until one of the subsystems’ gradients reaches zero.

As Theorem 6 shows, the system is asymptotically stable in Xs, combined with Theorem 7, we know

this algorithm computes the NE as described in Theorem 5. Because the switched system is not globally

uniform asymptotically stable in X , so we need to set the initial point appropriately. Note that we don’t

use a higher-order gradient descent method, such as Newton’s method, because the fast updating with

higher-order gradient information lets the solution in each subsystem converge to each subsystem’s stable

point too fast to realize the converge on the overall switched system.

V. IMPACT OF CUSTOMERS STRATEGIC BEHAVIOR

In this section, we analyze gaming agents’ strategic behavior in the two-agent two-period setting. First,

we state a benchmark centralized peak shaving model for comparison, then analyze agents’ strategic

behavior from both an economic perspective with the price of anarchy (PoA), and a technical perspective

with the peak shaving effectiveness.

A. Centralized peak shaving

We first state the centralized CP shaving model, which assumes a central operator has direct control

over both agents in the formulated two-period condition to reduce the total cost of both agents, including

the peak demand charge and the shifting cost. This centralized model thus maximizes the total objective

function of both agents and is denoted as

x∗ ∈ arg max
xi,x−i

−fi(xi, x−i)− f−i(xi, x−i), (15)

We now show in the following proposition that the centralized CP shaving model is equivalent to the

centralized peak shaving model which minimizes the total peak demand of both agents.
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Proposition 8. Centralized peak shaving model. The centralized CP shaving model (15) is equivalent to

the convex peak shaving model as follows:

x∗ ∈ arg min
xi,x−i

πmax{S1(x), S2(x)}+ αix
2
i + α−ix

2
−i (16)

Proof. Take fi, f−i as defined in (1) in to (15), we have

fi(xi, x−i) + f−i(xi, x−i) = π(Xi,1 + xi)I(S1(x)− S2(x)) + π(Xi,2 − xi)I(S2(x)− S1(x))

+ π(X−i,1 + x−i)I(S1(x)− S2(x)) + π(X−i,2 − x−i)I(S2(x)− S1(x)) + αix
2
−i + αix

2
i

= πS1(x)I(S1(x)− S2(x)) + πS2(x)I(S2(x)− S1(x)) + αix
2
−i + αix

2
i

= πmax{S1(x), S2(x)}+ αix
2
−i + αix

2
i . (17)

Note that the peak shaving model in (16) is convex because maximize two convex (linear) function

S1(x), S2(x) is convex; thus, we proves the Proposition.

This model assumes direct control of each agent’s demand and achieves peak shaving with minimal

cost. Thus, we consider (16) as a benchmark for comparison of our CP game model and analyze the

peak shaving effectiveness and PoA in the following sections.

B. Peak shaving ratio analysis

We show in the following theorem that the CP game can achieve the same effectiveness in reducing

the system peak demand at its equilibrium.

Theorem 9. Peak shaving performance of CP game. The peak shaving effectiveness of the game model

(1) at equilibrium is always 1, i.e.,

max{S1(x
∗), S2(x

∗)}
max{S1(x∗cen), S2(x∗cen)}

= 1, (18)

for all π, α,X > 0; where x∗ is the game equilibrium results and x∗cen is the centralized peak shaving

results.

Sketch of the proof. We prove this Theorem by first analytically writing the solution for the centralized

model shown in Proposition 8, and from Theorem 5, we have the game model solution. Then take the

solutions of the centralized model and the game model under the same condition into the peak shaving

effectiveness definition in this Theorem. The detailed proof is provided in the appendix.

This Theorem shows the game model always reaches the same peak shaving performance when

compared with the centralized model. The reason is that agents in both the game model and centralized
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model shift demand as much as possible to avoid CP charge without burdening more by their shifting

penalty. Specifically, under the concave game conditions, both agents shifting capability is limited by

their critical point, i.e., can’t balance their demand, which is also true in the centralized model. Under

quasiconcave and non-concave game conditions, the system demand in two time periods is balanced,

same to the centralized model. However, although the overall peak shaving performance is the same,

their individual demand shifting is different due to the information barrier, which reflects as cost of

reaching the peak shaving performance. We then analyze the cost by showing the PoA in the following

section.

C. PoA analysis

In this section, we study the PoA affected by gaming agents’ strategic behavior in all three game

structures, and we provide the following main results.

Theorem 10. PoA with agent equity. Given the PoA define as

P =
fi(x

∗) + f−i(x
∗)

fi(x∗cen) + f−i(x∗cen)
, (19a)

under the quasiconcave and non-concave game condition as described in Proposition 4, the PoA increases

with the inequity among agents, as measured by the marginal shifting cost αix
∗
i , i.e.,

∂P

∂[(αix∗i − α−ix∗−i)
2]

> 0 (19b)

where x∗ is the game equilibrium result and x∗cen is the centralized peak shaving results.

Sketch of the proof. From Theorem 5, we know the NE of the game model under quasiconcave and

non-concave game conditions. Combined with the centralized model solution obtained from Theorem 9,

we show the difference of nominator and denominator of the PoA as defined in (19a) can be expressed

as a Euclidean distance between agents’ marginal shifting cost αix
∗
i , i.e., (αix

∗
i − α−ix

∗
−i)

2. The detail

is provided in the appendix.

Under non-concave and quasiconcave game conditions, although the CP charge is always the same due

to the same peak shaving effectiveness, the shifting cost αix
∗2
i increases due to the information barrier.

We show in this theorem that the PoA increases with agent inequity, quantified by their marginal shifting

cost αix
∗
i = ∂(αix

2
i )/∂x

∗
i . Enhancing equity by balancing agents’ marginal shifting costs emerges as an

effective strategy to reduce the PoA, offering a pathway to design mechanisms that ensure both system

effectiveness and fairness. For example. a large shifting penalty parameter and a high shifting amount

together indicate a higher marginal shifting cost: the penalty represents greater comfort loss when shifting
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demand, while the high shifting amount stems from large demand differences requiring adjustment due to

CP charging. Regulating these agents to shift less or offering incentives to lower their penalty parameter

can balance marginal shifting costs, improve system equity, and reduce the PoA.

Theorem 11. PoA with CP game type. For given π, S, α > 0, the PoA defined as Theorem 10 is highest

at equilibrium for quasiconcave games, followed by non-concave games, and lowest for concave games,

where it is always equal to 1, i.e.,

P (Quasiconcave game) ≥ P (Non-concave game) ≥ P (Concave game) = 1.

Sketch of the proof. We first show P = 1 is always true for the concave game due to the same solution

structure between the centralized model and concave game model based on the results from Theorems

5 and 9. Then from Theorem 10, we know the PoA expression as Euclidean distance between agents’

marginal shifting cost under quasiconcave and non-concave game conditions, indicating P ≥ 1. Thus,

quasiconcave games and non-concave games always cause higher PoA than concave games. We then

show by fixing π, S, α > 0, the agent’s baseline demand Xi,1, Xi,2 can vary to cause different game

structures, so as to different solution structure x∗i , x
∗
−i from Theorems 5. Combined with the fact that

quasiconcave and non-concave games always balance system demand, i.e., x∗i + x∗−i = b from Theorem

5, we prove the quasiconcave game solution shows a higher difference between x∗i , x
∗
−i, indicating higher

PoA than a non-concave game. The detailed proof is provided in the appendix.

This theorem demonstrates the impact of the CP game type on the PoA, where the game type reflects

the agents’ flexibility. We first fix the system conditions π, S while allowing the agents’ conditions to vary.

From Theorem 5, we know that agents’ flexibility is determined by their shifting penalty parameters α and

baseline demand Xi,1, Xi,2. To control the influence of both parameters, we also fix α, making the PoA

dependent only on x∗i , which reflects the difference in the game structure. As the balance point (demand

difference) bi = (Xi,2−Xi,1)/2 increases, the agent’s flexibility decreases, and the game type transitions

from a quasiconcave game to a non-concave game, and finally to a concave game. This follows from the

conditions −ri ≤ bi ≤ ri for both i,−i to {−ri − r−i ≤ b ≤ ri + r−i} ∩ {b ≥ ri + r−i ∪ b ≤ −ri − r−i}

to {ri + r−i < b} ∪ {−ri − r−i > b} as stated in Proposition 4. Thus, the PoA increases with agents’

flexibility and is reflected in the change in game type. It is also evident that fixing Xi,1, Xi,2 while

allowing αi to vary yields the same results. Note that this theorem also shows that under the concave

game condition, the system’s performance is always equivalent to that of the centralized model, indicating

no harm to utility companies and agents when applying the concave CP game.
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VI. EXTENSION TO MULTI-AGENT CP GAMES

In this section, we consider an extension of our model from the two-agent two-period CP game to the

multi-agent two-period CP game, and we analyze the NE, stability/convergence, as well as the consumers’

strategic behavior.

A. Multi-agent CP game

We extend the CP game G from two-agent to multi-agent with G′ = (N,X , U), such that,

• N = {1, 2, ..., |N |} with index i is the player set, where | · | for a set means the number of elements

inside a set (otherwise, it is absolute value); specifically, we slightly abuse the notation of −i to

indicate all players but i.

• X = ×i∈NXi is the strategy set formed by the product topology of each agent’s individual strategy

set Xi.

• U = {fi|i ∈ N} is the payoff function set, where fi : X → R.

Then agent i’s payoff function as described in (1) can be generalized as follows:

max
xi

fi(xi, x−i) = −π(Xi,1 + xi)I(S1(x)− S2(x))

−π(Xi,2 − xi)I(S2(x)− S1(x))− αix
2
i , (20a)

S1(x) =
∑
i∈N

(Xi,1 + xi) = S1,0 +
∑
i∈N

xi, (20b)

S2(x) =
∑
i∈N

(Xi,2 − xi) = S2,0 −
∑
i∈N

xi, (20c)

xi ∈ Xi = R, ∀i ∈ N. (20d)

Note that here we also slightly abuse the system demand notation S1, S2 denote the sum of N agent’s

demand at time 1 and 2.

The multi-agent CP game G′ still follow the property as described in Proposition 4, i.e., the CP game

G′ is

1) Concave if

b < −
∑
i∈N

ri, if S1,0 ≥ S2,0, b >
∑
i∈N

ri, if S1,0 < S2,0, (21a)

2) Quasiconcave if

−ri ≤ bi ≤ ri, ∀i ∈ N ; (21b)
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3) Non-concave if

{−
∑
i∈N

ri ≤ b ≤
∑
i∈N

ri} ∩ {∃i ∈ N, bi < −ri ∪ bi > ri}. (21c)

The concave and quasiconcave conditions are intuitive and can be obtained following the same process

of Proposition 4. Then the non-concave condition is determined by the complementary set of concave

and quasiconcave conditions.

In terms of the NE solutions, we can’t analyze each agent’s capability case by case like the two-agent

setting. Thus, we separately analyze NE in each game types. We first show concave game has a unique

NE as defined in Definition 1 according to [39], which is obtained when both agents reach their critical

point as defined in Definition 2 corresponding to the active subsystems, and we have the NE as follows,

x∗i = −ri, i ∈ N, if b < −
∑
i∈N

ri, (22a)

x∗i = ri, i ∈ N, if b >
∑
i∈N

ri. (22b)

Noted that when all x∗i take −ri, the system must lie in subsystem 1 where S1,0 ≥ S2,0, and agents shift

demand from time 1 to time 2, until reaching their critical point.

NE of the quasiconcave game is not intuitive and we introduce the following Proposition to analyze

it.

Proposition 12. Existence and uniqueness of NE in multi-agent quasiconcave CP game. The quasiconcave

CP game G′ as described in (20) and satisfy (21b) has a unique pure-strategy Nash equilibrium (x∗i , x
∗
−i)

as defined in Definition 1, where

x∗i = bi, i ∈ N,S1(x
∗) = S1,0 +

∑
i∈N

x∗i = S2,0 −
∑
i∈N

x∗i = S2(x
∗). (23)

Sketch of the proof. To prove this Proposition, we derive two Lemmas showing the existence (Lemma

17) and uniqueness (Lemma 18). The basic principle of existence Lemma is based on [38], i.e., the sum

of the player’s payoff functions is upper semi-continuous in x ∈ X and game G′ is payoff security,

where we define in the proof. The proof of uniqueness Lemma is based on [39]. We first prove the

uniqueness of NE in each subsystem 1 and 2. Then, we start with a two-agent setting to analyze all

agents’ best responses and use min-max formulation to show the NE of each agent. After that we apply

this two-agent results to multi-agent setting by sequentially partition agents into two groups. The detailed

proof is provided in the appendix.
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This Proposition shows the quasiconcave CP game G′ has a unique NE and always obtains at all

agents’ balance point bi. This shows when capable agents are gaming on the system, they will always

balance their demand and also the system demand, reaching the best peak-shaving performance.

In terms of non-concave game, obviously, the NE is not unique, but we can still derive the NE structure.

Note that in both concave and quasiconcave conditions, the NE of multi-agent CP game G′ is the same

as that of two-agent CP game G by simply extending agent i,−i to i ∈ N . Following this idea, we

also analyze the non-concave CP game G′ based on the two-agent CP game G. Basically, Theorem 5

conveys an important message that the system demand will always be balanced in the two periods, i.e.,

x∗i +x∗−i = b, and one agent (less flexible according to shifting penalty parameters and baseline demand)

first reach the critical point while the other agent balance the system demand in the two time periods.

Here we denote the agents whose baseline peak demand is in the system baseline CP time as CP-time

agent, and the other as non-CP-time agent. We also call the set that includes all CP-time agents as

CP-time agent set and includes all non-CP-time agents as non-CP-time agent set, denote as Ncp, Nncp,

respectively, such that Ncp ∪Nncp = N,Ncp ∩Nncp = ∅. We then provide the following Proposition to

analyze the NE of non-concave multi-agent CP game G′.

Proposition 13. NE in non-concave multi-agent CP game. Given non-concave multi-agent CP game G′

and S1,0 < S2,0, under the condition of∑
i∈Ncp

min{ri, bi} <
∑
i∈Ncp

bi,−
∑
i∈N

ri ≤ b ≤
∑
i∈N

ri; , (24a)

the NE solution for each CP-time agent and for the whole non-CP-time agent set is given by

x∗i = min{ri, bi}, i ∈ Ncp,
∑

i∈Nncp

x∗i = b−
∑
i∈Ncp

min{ri, bi}; (24b)

otherwise, the NE solution for each non-CP-time agent and the overall CP-time agent set is given by

x∗i = max{−ri, bi}, i ∈ Nncp,
∑
i∈Ncp

x∗i = b−
∑

i∈Nncp

max{−ri, bi}, (24c)

corresponding to the condition∑
i∈Nncp

max{−ri, bi} >
∑
i∈Ncp

bi,−
∑
i∈N

ri ≤ b ≤
∑
i∈N

ri; (24d)

Sketch of the proof. The basic idea is to assume two virtual agents that have the same baseline demand

and shifting penalty conditions with the CP-time agent set and non-CP-time agent set. However, their

strategy structures are different, where the agent set’s strategy is determined by the aggregation of each

individual agent’s strategy. From Theorem 5, we derive the best strategies of two virtual agents, and from

the best response analysis, we know the agent sets and virtual agents have the same response rationale
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due to the same baseline conditions. Basically, they will both shift demand away from CP time or to

CP time to make a profit, and the profit positively relates to their shifting amount. We then link the two

virtual agents’ strategies to the agent sets’ strategy and show the equilibrium point for the CP-time agent

set and the non-CP-time agent set under different baseline conditions. The detailed proof is provided in

the appendix.

In the Proposition, we present the condition for S1,0 < S2,0; when S1,0 ≥ S2,0, the only difference is to

replace ±ri with ∓ri. This Proposition demonstrates that we can analytically determine the equilibrium

solution for one set of agents — either the CP-time agent set Ncp or non-CP-time agent set Nncp. For

the remaining set, we can determine only the aggregated performance of the set. Note that we can’t

get the analytical NE solutions for each agent because agents in the remaining set can internally adjust

their strategies while maintaining the same aggregated (set-level) performance. This internal adjustment

does not affect the existence of the NE. Essentially, more flexible agents, those with lower shifting

penalty parameters and higher baseline demand differences, will shift more to achieve the overall shifting

performance of their set.

We then analyze the stability of the equilibrium point under multi-agent CP game G′ based on the

two-agent game’s results as described in Theorem 6. Following the same proof structure, we can derive

the asymptotically stable property also holds for multi-agent CP game G′, and the strategy set Xs change

to include all agents’ decisions as follows

Xs = {x|
∑
i∈N

αix
2
i + π(S1,0 +

∑
i∈N

xi) > 0 ∪
∑
i∈N

αix
2
i + π(S2,0 −

∑
i∈N

xi) > 0}. (25)

With this stability property, we then show that a finite learning rate in (13) can still be chosen such that

a gradient-based algorithm using (13) as updating rule finds the equilibrium point for the multi-agent CP

game G′. The only difference in the multi-agent setting is that the criteria shift from the convergence

of each agent’s objective across two time periods to the convergence of the aggregated objectives of all

CP-agents and non-CP-agents across the two periods.

Remark 14. Determination of equilibrium point in multi-agent CP game. A finite learning rate τh as

described in (13) can be chosen such that when S1,0 ≥ S2,0,∑
i∈Ncp

−fi,1(xh) <
∑
i∈Ncp

−fi,1(xh),
∑
i∈Ncp

−fi,2(xh) >
∑
i∈Ncp

−fi,2(xh). (26a)

∑
i∈Nncp

−fi,2(xh) <
∑

i∈Nncp

−fi,2(xh),
∑

i∈Nncp

−fi,1(xh) >
∑

i∈Nncp

−fi,1(xh). (26b)

When S1,0 < S2,0, the greater and less sign reverse.
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To conclude, the game framework is also workable for the multi-agent two-period setting as the NE

still exists and is asymptotically stable within a strategy set as defined in (25). Also, a gradient-based

algorithm with the updating rule as (13) can still compute the equilibrium point. We then analyze the

impact of consumers’ strategic behavior in the multi-agent setting.

B. Consumers strategic behavior in Multi-agent CP game

We show the peak shaving effectiveness and PoA under the multi-agent setting in this section, where

the centralized model could be denoted as x∗cen ∈ argmaxxi

∑
i∈N −fi(x). Combined with Proposition

8, under the concave game condition, the centralized solution can be easily obtained by the first-order

optimality conditions.

The peak shaving effectiveness, as defined in Theorem 9, is still equal to 1 at the equilibrium of the

game model. The reason is that the system demand will be balanced under all game conditions, the same

as the centralized model. The PoA in the multi-agent setting is PN =
∑

i∈N fi(x
∗)/

∑
i∈N fi(x

∗
cen). As

the centralized model is convex from Proposition 8, and x∗cen,i is the unique minimizer for the problem,

we always have P ≥ 1. Specifically, the concave game model remains equivalent to the corresponding

centralized model and always has P = 1.

With the agent number increase, the PoA under quasiconcave and non-concave games will be affected

due to the game type changes, and we have the following remark.

Remark 15. Game type with agent numbers. As N increases, the game structure will more likely be a

non-concave game.

It is intuitive that the non-concave game type is more likely to appear as the agent number increases

because the probability that all agents are capable or non-capable reduces exponentially. As we analyzed

at Theorem 11, the agent’s flexibility changes game types and thus causes different PoA. This means the

PoA of a small system is more sensitive to the agents’ flexibility, and a large system can handle flexible

agents as the game type could change from quasiconcave to non-concave due to adding inflexible agents.

VII. NUMERICAL EXAMPLE

In this section, we use numerical simulations to show the CP game solution, and we show the numerical

test aligns with the theoretical analysis as Theorem 5 and Proposition 13 shows. We set the CP charge

price to π = 1, and separate three two-agent two-period cases and one multi-agent two-period case with

different baseline demand and shifting penalty parameters.
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Fig. 1. Convergence under quasiconcave game condition.

A. Two-agent two-period CP game

We set the baseline demand as Xi,1 = 6, Xi,2 = 3, X−i,1 = 3, X−i,2 = 10, then change the shifting

penalty parameters to change the agent capability.

(1) Set αi = 0.2, α−i = 0.1, then all agents’ are capable according to Definition 3 and the behavior

regime follow the quasiconcave game. The solution jumps between subsystems 1 and 2, so the cost

function value jumps up and down, but the cost reduces or increases when jumping back to the last

subsystem, i.e., the cost distance between these two subsystems reduces. Finally, the cost distance reduces

to zero for each agent as they balance their demand in two time periods, and the system converges to

the equilibrium point, corresponding to (7c). Compared with the solution from the centralized model, we

observe that there are huge shifting changes and an increase in the system’s overall cost due to anarchy,

reflected as the PoA is 1.125, indicating anarchy increases the system cost by 12.5% compared to the

centralized method. The peak shaving ratio is the same as they all balance system demand.

(2). Set αi = 0.5, α−i = 0.1, then agent i is non-capable, and agent −i is capable according to

Definition 3, and the behavior regime follow the non-concave game. The solution trajectory is similar

to the quasiconcave condition, but the cost distance can’t reach zero when convergence as both agents

do not self-balance their demand in the two-time period, and the more flexible agent (agent −i) gets

more benefits by lowering its demand in CP time. The results correspond to (7d). Compared with the

quasiconcave game, we observe that the demand shifting from the game model is close to the centralized

solution, and the system cost increase due to anarchy is also reduced with a PoA of 1.0941.

(3). Set αi = 0.5, α−i = 0.6, then both agents can’t change the CP time together, and the behavior

regime is concave game, where only subsystem 2 is active during the entire solution trajectory. Thus, the

trajectory doesn’t jump and gradually reduces to the critical point, which corresponds to (7b). Obviously,
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Fig. 2. Convergence under non-concave game condition.
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Fig. 3. Convergence under concave game condition.

the demand shifting converges to the same point with the centralized model, and the PoA is 1, indicating

these two models are exactly equivalent.

B. Multiple agents and two-period CP game

We create a six-agent system with baseline demand and shifting penalty parameters, as Table I shows.

We first notice the game is non-concave because all agents can change CP time together, but not all agents

are capable, i.e., agents 3 and 4 are non-capable. Also, we know agents 1, 3, and 6 are non-CP-time

agents, and agents 2, 4, and 5 are CP-time agents.

Figure 4 shows the convergence point and cost trajectory, and Figure 5 shows the cost trajectory from

non-CP time agent and CP time agents’ perspective. Noted that the results align with our analysis in

Proposition 13 and Remark 14. Specifically, the non-CP time agents shift demand to the balance point

or reach their critical point, i.e., agents 1 and 6 balance their demand in the two time periods, and



25

TABLE I

AGENTS’ PARAMETERS AND SOLUTION OF GAME AND CENTRALIZED MODEL

Agent 1 2 3 4 5 6 Total

Baseline demand 1 7 3 10 1 2 5 28

Baseline demand 2 3 13 4 4 6 3 33

Penalty parameter 0.2 0.1 0.4 0.5 0.2 0.1 \

Centralized shifting 0.36 0.72 0.18 0.15 0.36 0.73 2.5

Game shifting -2 3.85 -1.25 0.93 1.97 -1 2.5

PoA 1.1317
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Fig. 4. Convergence of multiple agents concave CP game.

agents 3 reach the critical point limit by its shifting penalty. The CP time agents can internally shift their

demand, which is observed after nearly 120 iterations, where CP time and non-CP time agents almost

balance the system demand in the two time periods (Figure 5), agents 4 and 5, with the higher shifting

penalty parameter than agent 2, gradually reduce its demand shifting, while agent 2’s demand shifting

increase. From the cost function trajectory (Figure 4), it is also clear that agent 4, with the highest shifting

parameter, reduces more demand than agent 5.

Compared to the game model solution with the centralized model solution, obviously, the equilibrium

solution deviates a lot, where all agents shift more demand due to the information barrier. This increases

the cost and results in a PoA of 1.1317 while maintaining the same peak shaving performance.

C. Agent number impacts on PoA

In this section, we randomly generate agent samples for the systems with different agent numbers while

satisfying the union of non-concave and quasiconcave game conditions as described in (21b) and (21c),
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the quartiles, and the short blue line inside the box is the median value.

i.e.,
∑

i∈N −ri < b <
∑

i∈N ri. We set the agent’s i, i ∈ N baseline demand as Xi,1, Xi,2 ∈ (0, 15) and

penalty parameters as αi ∈ (0, 0.5). We loop the agent number from 2 to 50, and each agent number

generates 1000 samples to calculate the PoA. We present the results in Fig. 6. As our theoretical analysis

indicates, PoA is more fluctuates when agent number N is small; also, the game type is more varied

with quasiconcave, concave, and non-concave, affected by agents’ flexibility, indicating the small system

is more sensitive to the agent’s flexibility. When N is large, all game conditions become non-concave,

and the mean PoA converges together, and the variance decreases. This means the large system is more

stable and can eliminate the agent’s flexibility influence on PoA.

VIII. DISCUSSION AND CONCLUSION

We propose a theoretical game framework to model the CP shaving problem. We show the game-based

framework is workable for the CP shaving problem by analyzing the game structure and analytically
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deriving the NE for each game structure under the two-agent setting. We also prove the equilibrium

points are global uniform asymptotically stable if all consumers’ demand is non-negative and show that

the gradient-based algorithm with an updating rule that serves as the finite difference approximation

to the asymptotically stable process can compute the equilibrium points. We also extend our results to

multi-agent settings. Using the equilibrium solution from two-agent settings, we analytically show that

the gaming agents’ strategic behaviors reach the same peak shaving effectiveness compared with an

equivalent centralized peak shaving model but with a higher PoA under quasiconcave and non-concave

conditions. We also show the same results still hold for the multi-agent setting. We conclude this is

helpful for utility companies when applying the game model, especially for concave game conditions

that are equivalent to centralized peak shaving.

By analyzing the quasiconcave and non-concave game PoA in the two-agent settings, we show PoA

increases with the inequity level between agents measured by their marginal shifting cost. This implies an

effective and equitable way to design CP shaving mechanisms is to balance their marginal shifting cost,

i.e., offering some incentive to non-flexible agents with higher comfort loss when shifting demand or

regulating them to shift less demand. We also show that the PoA increases as the game type transitions

from a concave game to a non-concave game and then to a quasiconcave game, corresponding to an

increase in agent flexibility. This suggests that greater agent flexibility amplifies system inefficiency. In

the multi-agent setting, we show that the PoA is sensitive to agents’ flexibility when the agent number

is small as it changes the game type. With the agent number increase, the game is more likely to be

a non-concave game, indicating the PoA of a large system is more likely to be stable. Combined with

the numerical results, we show the marginal effect of adding additional agents diminishes as the agent

number increases. Thus, forming a large system for flexible agents while a small system for inflexible

agents is a good way to reduce system inefficiency.

Our work has a few limitations. First of all, we formulate the demand shifting penalty as a quadratic

function. Future research is needed to examine more generic functions and even obtain empirical models

from data-driven methods. Another limitation is that we only look at a scheduling problem with simulta-

neous decisions. Additional research is needed to study the CP game under a sequential context, where

agents demand shifting decisions are made stage by stage given the non-anticipatory price and demand

realization. This also motivates the last limitation, which is that we did not consider the incomplete

information of the game model. In practice, agents’ payoff structure should be private information that

can’t be observed by others, but agents may get others’ previous decisions and system peak time to

update their beliefs gradually. We would expect contextual optimization to be a promising way to infer

the private payoff function from other observed features and embed it into the stochastic formulation.
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APPENDIX A

PROOF OF PROPOSITION 4

Proof. We separate three conditions to analyze the continuity and concavity due to the indicator function.

(1) We first analyze the concave game conditions. To make the game concave, the CP time can’t be

changed, and there must be only one subsystem active in the entire solution process. In this case, the

indicator function is eliminated, and the payoff function returns to a quadratic function as described in

(3), which is concave and continuous. Because changing CP time requires the sum of all agents’ demand

shifting greater than the system balance point b, and the greatest demand shifting is their critical point.

Thus, the conditions is b < −ri − r−i when S1,0 ≥ S2,0 and b > ri + r−i when S1,0 < S2,0.

(2) We then prove the quasiconcave/discontinuous conditions. When the subsystem changes in the

gaming process, it is obvious that the indicator function makes the game discontinuous. We then write

the payoff function of agent i with the switching point ci = b− x−i

fi(xi, x−i) = −(Xi,1 + xi)I(xi − ci)− (Xi,2 − xi)I(ci − xi)− αix
2
i , (27)

According to the definition of the quasiconcave function, for all x′i, x
′′
i ∈ Xi and λ ∈ [0, 1], agent i’s

payoff function fi(xi, x−i) should satisfy the following for all x−i ∈ X−i,

fi(λx
′
i + (1− λ)x′′i , x−i) ≥ min{fi(x′i, x−i), fi(x

′′
i , x−i)}, (28)

which is determined by the switching point ci and the critical point ri. There are three cases.

i) Agent i can switch CP time before reaching critical points in both subsystems 1 and 2, i.e., the

switching point within the critical point −ri ≤ ci ≤ ri, and we have

− ri ≤ b− x−i, ri ≥ b− x−i, (29)

Graphically, the function is monotonically increasing before the switching point and decreasing after the

switching point.

ii) Agent i can only switch CP time before reaching critical points in subsystem 1, i.e., the switching

point is greater than the critical point of subsystem 2 ri < ci. Also, the function is l.s.c. as defined in

Definition 1, i.e., −(Xi,2 − ci) < −(Xi,1 + ci), and we have

ri < b− x−i,
Xi,2 −Xi,1

2
= bi < b− x−i, (30)

Graphically, the function is quadratic (concave) in the left part of the switching point, monotonically

decreasing in the right part of the switching point, and the function is l.s.c. in the switching point.
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iii) Agent i can only switch CP time before reaching critical points in subsystem 2, i.e., the switching

point is less than the critical point of subsystem 1 −ri > ci. Also, the function is u.s.c. as defined in

Definition 1, i.e., −(Xi,2 − ci) < −(Xi,1 + ci), and we have

− ri > b− x−i,
Xi,2 −Xi,1

2
= bi > b− x−i, (31)

Graphically, the function increases monotonically in the left part of the switching point, is quadratic

(concave) in the right part of the switching point, and is u.s.c. in the switching point.

Combining these three scenarios, we need both agents’ payoff functions to satisfy one of them for all

other agents’ strategies to make the game quasiconcave. When agent i satisfy case i), according to the

condition (29), agent −i’s strategy needs to satisfy x−i ∈ [b− ri, b+ ri]. From the graph description, we

know agent −i’s strategy is x−i = c−i = b− xi, x−i = −r−i, and x−i = r−i under case i), ii), and iii),

respectively. Obviously, r−i and ri belong to different agents and are independent, so agent −i under

case ii) and case iii) conditions can’t guarantee the quasiconcave conditions. In case i), if −ri ≤ bi ≤ ri,

the agent can balance its demand in the two periods, thus the maximum xi = bi, if bi > ri or bi < −ri,

the best strategy is either ri or −ri. This means xi ∈ [−ri, ri], and thus x−i ∈ [b− ri, b+ ri]. Because

both agents take the best strategy at the switching point, the only solution is xi = bi, x−i = b−i, and

taking this into (29), we have the conditions

−ri ≤ bi ≤ ri, −r−i ≤ b−i ≤ r−i. (32)

Otherwise, suppose agent i satisfies case ii), according to the condition (30), agent −i’s strategy needs

to satisfy x−i < min{b − ri, b − bi}. We know agent −i’s strategy is x−i = −r−i and x−i = r−i

under cases ii) and iii), and r−i are independent to ri and bi. Thus, agent −i under cases ii) and iii)

can’t guarantee the quasiconcave conditions. We then conclude that each player’s payoff function is

quasiconcave if (32) is true, which shows each agent is capable according to Definition 3.

(3) Other than the above two conditions, the game is non-concave and still discontinuous due to the

indicator function. In this case, at least one agent is non-capable, and they can change the CP time

together. We can directly write the conditions as the complementary set of concave and quasiconcave

conditions with respect to R, i.e., (6d). This finishes the proof of this proposition.

APPENDIX B

PROOF OF THEOREM 5

Proof. The basic idea of proving this Theorem is to analyze whether agents are capable, if they are

not, whether they are upper non-capable or lower-non-capable, and different conditions corresponding to
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different NE. The rationale is that both agents’ best response is to balance their demand in two periods,

but this is limited by their baseline conditions, which is similar to analyzing the relationship between

their critical point and balance point.

Note that the lower non-capable agent i satisfies bi < −ri, corresponding to scenario iii) as described

in the proof of Proposition 4. Graphically, it shows the function increases monotonically in the left part

of the switching point, and quadratic (concave) in the right part of the switching point, but not u.s.c.

in the switching point. While the upper non-capable agent i is bi > ri, corresponding to scenario ii) as

described in the proof of Proposition 4. Graphically, it shows the function is quadratic (concave) in the

left part of the switching point, monotonically decreasing in the right part of the switching point, but not

l.s.c. in the switching point.

We then separate many scenarios according to whether they are non-capable agents, upper non-capable,

or lower non-capable, to analyze the NE and corresponding conditions.

(1) S1,0 ≥ S2,0, i.e., baseline CP time is 1.

(1a) Xi,1 ≥ Xi,2, X−i,1 ≥ X−i,2, i.e., both agents’ individual demand is higher in the baseline CP

time. We have four scenarios determined by whether they are capable or not.

• Both agents are capable agents, i.e., −ri ≤ bi ≤ 0,−r−i ≤ b−i ≤ 0, which means they can balance

their demand, and the NE for all agent is their balance point,

x∗i = bi, x
∗
−i = b−i (33a)

and we have the conditions for each agent as

−ri ≤ bi ≤ 0,−r−i ≤ b−i ≤ 0. (33b)

• Agent i is non-capable, while agent −i is capable, i.e., bi < −ri ≤ 0,−r−i ≤ b−i ≤ 0. Due to

Xi,1 ≥ Xi,2, agent i must be lower non-capable, and the NE for agent i is the critical point, i.e.,

x∗i = −ri. Agent −i can at least shift demand until the system demand balance in the two periods,

and as agent i can’t reach the balance point, agent −i can save more by shifting more demand away

from the CP time, but needs to compare with the penalty. Thus, the NE for agent −i is

x∗−i = max{−r−i, y
′
−i}, y′−i = b−i − (x∗i − bi) = b− x∗i ≤ 0. (34a)

Then we compare the y′−i with its critical point −r−i. If y′−i < −r−i, i.e., b− x∗i = b+ ri < −r−i,

which is equivalent to −ri − r−i > b, agent −i can’t change the CP time solely, then x∗−i = −r−i.

The corresponding conditions for agent i is −ri > bi, and for agent −i is

− r−i ≤ b−i < −ri − r−i − bi. (34b)
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where −r−i ≤ b−i is because agent −i is capable. Otherwise, when −ri− r−i ≤ b, the best strategy

for agent −i is y′−i, and we have x∗−i = b + ri. The corresponding condition for agent i is still

−ri > bi, for agent −i is

b−i ≥ −ri − r−i − bi. (34c)

Note that this includes two scenarios when changing i to −i.

• Both agents are (lower) non-capable, i.e., −ri > bi,−r−i > b−i, and the NE is their critical point

x∗i = −ri, x
∗
−i = −r−i.

(1b) Xi,1 ≥ Xi,2, X−i,1 < X−i,2, i.e., agent i’s demand is higher in the CP time, while agent −i’s

demand is lower. Similar to (1a), when both agents are capable, the NE is their balance point. When

they are not all capable agents, their optimal strategy is determined by whether they can change the CP

time together and whether they can balance their own demand. Suppose agent i is non-capable, due to

Xi,1 ≥ Xi,2, agent i must be lower non-capable, i.e., bi < −ri. Because CP time is 1 and agent i’s

demand is higher in time 1, although agent i is lower non-capable, it is possible to change the CP time

solely without balancing its own demand. Thus, we separate two scenarios to analyze.

• Agent i can’t change the CP time solely, i.e., −ri ≥ b. Agent i’s best strategy is to shift demand

away from the CP time, but can’t reach the system balance point, so agent −i will also shift some

demand away from the CP time to reduce its cost but must compare with the shifting penalty. Thus,

the NE is

x∗i = −ri, x
∗
−i = max{−r−i, b− x∗i }. (35a)

When −r−i > b−x∗i , both agents can’t change the CP time together, and the best strategy for agent

−i is x∗−i = −r−i. The condition for agent i is bi < −ri, and for agent −i is b−i < −ri − r−i − bi.

Otherwise, −r−i ≤ b−x∗i , agent −i can cooperate with agent i to change the CP time, and the best

strategy for agent i is x∗−i = b − x∗i = b + ri. The condition for agent i is the same as the lower

non-capable condition bi < −ri, and for agent −i is

− ri ≥ b,−ri − r−i ≤ b, (35b)

− ri − r−i − bi ≤ b−i ≤ −ri − bi. (35c)

• Agent i can change the CP time solely, i.e., −ri < b. Agent i shifts demand away from CP time and

at least change the CP time, and agent −i will move demand back to CP time to keep the original

CP time. Thus, determined by which agent can shift more before reaching their critical point limit,

the NE is

x∗i = max{−ri, b− x∗−i}, x∗−i = min{r−i, b− x∗i }. (36a)
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When r−i ≤ b − x∗i , which means agent −i first reach the critical point limit, then agent i must

satisfy b− x∗−i > −ri. Thus, the best strategy is x∗i = b− r−i, x
∗
−i = r−i. The condition for agent

i is the same as the lower non-capable condition bi < −ri, and for agent −i is

b− r−i > −ri, b−i > r−i − ri − bi. (36b)

Otherwise, we have the best strategy for both agents as x∗i = −ri, x
∗
−i = b+ri, and the corresponding

condition for agent i is still bi < −ri, and for agent −i is

− ri − bi < b−i ≤ r−i − ri − bi. (36c)

If agent −i is non-capable, due to X−i,1 < X−i,2, agent −i must be upper non-capable, i.e., b−i > r−i

Here, we focus on the conditions that both agents can change the CP time together because we have

shown the condition that they can’t change the CP time above. Thus, the NE is determined by which

agents can shift more before reaching their critical point limit, and we have the solution structure

x∗−i = min{r−i, b− x∗i }, x∗i = max{−ri, b− x∗−i}. (37a)

Following the same process with (36), we know when −ri ≥ b−x∗−i, agent −i must satisfy r−i > b−x∗i ,

and the best strategy for both agents are x∗i = −ri, x
∗
−i = b+ ri. The condition for agent −i is the upper

non-capable condition b−i > r−i, and for agent i is

r−i ≥ b+ ri,−ri − r−i ≤ b, (37b)

− ri − r−i − b−i ≤ bi ≤ −ri + r−i − b−i, (37c)

where the second condition is because both agents can change the CP time together. Otherwise, the best

strategy for both agents are x∗i = b − r−i, x
∗
−i = r−i, and the condition for agent −i is still the upper

non-capable condition b−i > r−i, and for agent i is

− ri ≤ b− r−i, ri + r−i ≥ b, (37d)

− ri + r−i − b−i ≤ bi ≤ ri + r−i − b−i. (37e)

(1c) Xi,1 < Xi,2, X−i,1 ≥ X−i,2, i.e., agent −i’s demand is higher in the CP time, while agent i’s

demand is lower, which is the same to (1b) by changing the i to −i, and we omit the redundant math

here.

(2) S1,0 < S2,0, i.e., baseline CP time 2. Similar to the CP time 1 condition, we can still separate

three cases with (2a) Xi,1 < Xi,2, X−i,1 < X−i,2; (2b) Xi,1 ≥ Xi,2, X−i,1 < X−i,2; and (2c) Xi,1 <

Xi,2, X−i,1 ≥ X−i,2. The only difference in all cases is that when the best strategy is the critical point,
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the critical point changes from ±ri to ∓ri. Other analysis is the same as (1), and we omit the redundant

part.

To conclude, combining all the scenarios, we obtain the NE and corresponding conditions as (7) show

and prove this Theorem.

APPENDIX C

PROOF OF THEOREM 6

Overview of the proof : The basic idea of proving this Theorem is to show that each subsystem is

asymptotically stable in the strategy set X , then, add the switching logic to show the system is global

uniform asymptotically stable in Xs as described in Theorem 6, i.e., local uniform asymptotically stable

in X . We specify the proof process as follows:

• We first prove each subsystem (8) and (9) is asymptotically stable in the strategy set X . (Lemma

16).

• Then we prove the overall system (10) with the switched logic is global uniform asymptotically

stable in Xs.

We first provide Lemma 16 to show the stability in the subsystem.

Lemma 16. Subsystem stability at equilibrium point. The system (8) is asymptotically stable in X , i.e.,

for every starting point x ∈ X , the solution x(k) to the system (8) converges to an equilibrium point x∗

as k → ∞, where F1(x
∗) = 0.

Proof. The key is to show the rate of change of ∥F1(x)∥2 is always negative for F1(x) ̸= 0 [39]. We

have

dF1

dk
= G

dx

dk
= Gẋ, (38)

where G is the Jacobian of F1(x), and G = −2diag(α1, α2), where diag(·) : R2 → R2·2.

Now, according to (8a) and combining with the (38), we have

1

2

d∥F 2
1 ∥

dk
=

1

2

dF T
1 F1

dk
= F T

1

dF1

dk
= F T

1 GF1 =
1

2
F T
1 (G+GT )F1. (39a)

Because the G+GT is negative definite, we conclude that, for some ϵ > 0, (39a) is equivalent to

1

2

d∥F 2
1 ∥

dk
≤ −ϵ∥F1∥2 (39b)

Thus, limk→∞∥F1∥ = 0, so that x(k) → x∗, where x∗ is the equilibrium point and F1(x
∗) = 0. Following

the interior trajectory theorem from [39], we know x∗ ∈ X , which proves this Lemma by showing (8)

is asymptotically stable.
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From Lemma 16, the system (8) is asymptotically stable in X , and this asymptotically stable result can

be extrapolated to the system (9). We then add the switched logic to study global uniform asymptotically

stability at the equilibrium point in Xs and prove the Theorem.

Proof of Theorem 6. From Lemma 16, all individual subsystems are asymptotically stable in the strategy

set X . We then rewrite the gradient of two subsystems as follows,

F1 = Ax+ C1, F2 = Ax+ C2, (40a)

A = [−2αi, 0; 0,−2α−i], C1 = −[π, π]T , C2 = −C1. (40b)

We prove the Theorem based on the multiple Lyapunov function method [40]. Since our dynamic

system is liner, the basic idea is to (i) find the functions Vj > 0 in each subsystem j = 1, 2, for V̇j ̸= 0,

the function Vj is always decreased along the solution of the jth subsystem in the region where this

subsystem is active; (ii) on the switching surface S1(x) = S2(x) the function Vj’s value match.

We then choose Vj , j = 1, 2 as follows:

V1 = −xT
A

2
x− CT

1 x+ d1,V2 = −xT
A

2
x− CT

2 x+ d2, (41a)

d1 = πS1,0, d2 = πS2,0. (41b)

Note that −∂V1/∂x = F1(x) and −∂V2/∂x = F2(x).

We first show the regions that guarantees function Vj > 0

αix
2
i + α−ix

2
−i + π(xi + x−i + S1,0) > 0, (42a)

αix
2
i + α−ix

2
−i + π(−xi − x−i + S2,0) > 0, (42b)

which is the same as (12) shows in this Theorem. We then show the rate of change of V̇j is negative.

V̇1 =
∂V1

∂x
F1 = −((

A

2

T

+
A

2
)x+ C1)(Ax+ C1) = xTA′x+ xTB′ − CT

1 C1, (43a)

A′ = [−4α2
i , 0; 0,−4α2

−i], B
′ = −(

A

2

T

+
A

2
)C1 −ATC1 = [−4παi,−4πα−i]

T . (43b)

We have the critical point (equilibrium point) when ∂(V̇1)/∂x = 0

x′ = −(A′T +A′)−1B′ = −[
π

2αi
,

π

2α−i
]. (43c)

It is easy to see A′ is negative definite. To show V̇1 < 0 except the equilibrium point, we need to show

V̇1(x
′) = 0, so that other point must less than zero.

V̇1(x
′) = B′T ((A′T +A′)−1)TA′(A′T +A′)−1B′ −B′T ((A′T +A′)−1)TB′ − CT

1 C1

= −1

4
B′T (A′−1)TB′ − CT

1 C1 = 0. (43d)
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In terms of V̇2, we have

V̇2 =
∂V2

∂x
F2 = −((

A

2

T

+
A

2
)x+ C2)(Ax+ C2). (44)

Due to C2 = −C1, the structure of V̇2 is the same to V̇1 and we can obtain V̇2 < 0 except the equilibrium

(critical) point x′ = [π/2αi, π/2α−i], where V̇2(x
′) = 0.

Then, we show V1 = V2 on the switching surface S1(x) = S2(x), where xi+x−i = b and fi,1+f−i,1 =

fi,2 + f−i,2, and the key is to show −CT
1 x+ d1 = −CT

2 x+ d2,

−CT
1 x+ d1 = π(xi + x−i) + πS1,0 = πb+ πS1,0 =

S2,0 + S1,0

2
, (45a)

−CT
2 x+ d2 = −π(xi + x−i) + πS2,0 = −πb+ πS2,0 =

S2,0 + S1,0

2
. (45b)

Then, we can conclude that Vj is always decrease except V̇j = 0. Also, the rate of decrease of Vj

along solutions is not affected by switching, and asymptotic stability is uniform with respect to j.

Now, let’s analyze the convergent point. If the game is concave, only one subsystem j is active, i.e.,

subsystem 1 is active if S1,0 ≥ S2,0 and vice verse. Then the function value Vj decreases over time until

V̇j = 0, and the system reaches the stable point as (11b) and (11c) shows.

Otherwise, both subsystems will be active sequentially, and Vj will decrease over time until V1 = V2.

The reason is that the dynamics from one subsystem always push the other subsystem active, e.g., F1

in subsystem 1 always decreases x, which pushes the solution past the switching surface and actives

subsystem 2. Thus, as V1 = V2 on the switching surface, both subsystems are finally stable on the

switching surface. This means x(k) → x∗ when k → ∞, where x∗ is the equilibrium point satisfy (11a).

Thus, we prove the global uniform asymptotically stable of the overall system in (12).

APPENDIX D

PROOF OF THEOREM 7

Proof. The key to proving this Theorem is to select the learning rate based on the backtracking line

search method. The learning rate depends on the subsystems on which the current and future steps lie,

as well as the payoff functions and the gradients that each agent follows.

Suppose the current step is h, we expresses the backtracking line search condition for each agent i to

choose the learning rate τ for the finite difference approximation (13) as follows,

−fi,j(xi,h+1) < −fi,j(xi,h)− β1τi,h∥Fj(xh)∥2, (46)

where β1 is the parameter within [0, 0.5]; fi,j means the function can take either fi,1 or fi,2 determined by

which subsystem the current and next step lies, and agent’s decision is decoupled within each subsystem.
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For example, if the current step xi,h lies in subsystem 1, j will take 1 for step h, and if the future step

xi,h+1 lies in subsystem 2, j will take 2 for step h+1. Note that fi(x) from (1) is formulated as a payoff

(profit); here, we use −fi(x) to express the cost.

When selecting the learning rate, we gradually reduce τi,h by β2τi,h, β2 ∈ [0, 1] until (46) satisfy. If

the next step and current step lie on the same subsystem, this condition ensures the objective −fi,j(xi,h)

reduces by at least β1τi,h∥Fj(xh)∥2. This proves the concave game convergence as all the steps lie in

one subsystem, and the objective function is concave, thus, the objective function gradually reduces until

∥Fj(xh)∥ = 0.

In terms of quasiconcave and non-concave games, there are switches during the algorithm iteration.

It is easy to imagine that each agent shifts demand away from the baseline CP time at the beginning,

monotonically reducing their costs, and the cost function is determined by the baseline CP time. Once

they reach the balance point (switching surface), xi,h + x−i,h = b, the solution starts switching between

two subsystems. Noted that when switching happens, both agents’ individual peak time must be different,

i.e., if Xi,1 + xi,h > Xi,2 − xi,h for agent i, then X−i,1 + x−i,h < X−i,2 − x−i,h must hold for agent −i;

otherwise, there will be no switching;

We then write the difference between −fi,1(xi) and −fi,2(xi) as

−fi,1(xi)− (−fi,2(xi)) = π(Xi,1 + xi − (Xi,2 − xi)). (47)

Suppose Xi,1 + xi,h > Xi,2 − xi,h for agent i, we know

−fi,1(xi,h) > −fi,2(xi,h),−f−i,1(x−i,h) < −f−i,2(x−i,h). (48)

Now, consider a trajectory starting from subsystem 1, switching to subsystem 2, and back to subsystem 1,

i.e., −fi,1(xh),−fi,2(xh+1),−fi,1(xh+2), our goal is to show −fi,1(xi) reduce while −fi,2(xi) increase

for agent i and −f−i,2(x−i) reduce while −f−i,1(x−i) increase for agent −i through the trajectory. Due

to the switching from subsystem 1 to 2, the gradient in subsystem 1 F1(xh) must be negative to reduce

the xh so that the CP time changes. We choose the learning rate τi,h, τ−i,h such that

−fi,2(xi,h+1) < −fi,1(xi,h)− β1τi,h∥F1(xh)∥2, (49a)

−f−i,2(x−i,h+1) < −f−i,1(x−i,h)− β1τ−i,h∥F1(xh)∥2, (49b)

As Xi,1+xi,h > Xi,2−xi,h and from (48), we know (49a) is easy to be true and we use the corresponding

τi,h to update xi,h following (46); while (49b) can’t be true, so x−i,h will not be updated. Thus, the

switching is caused by the update of agent i’s decision, and we know xi,h+1 < xi,h. Because the gradient

is in subsystem 1, F1 < 0, we know the xi,h+1 > −ri and suppose to be reduced to reach the critical
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point in subsystem 1 until converge, which indicates the right part of the critical point in the objective

function −fi,1, where its gradient −f ′
i,1 > 0. Thus, we have −fi,1(xi,h+1) < −fi,1(xi,h).

In subsystem 2, according to the trajectory, the gradient will push the solution back to subsystem

1, which requires x increase, and thus, we know F2(xh+1) > 0. We then choose the learning rate

τi,h+1, τ−i,h+1 such that

−fi,1(xi,h+2) < −fi,2(xi,h+1)− β1τi,h+1∥F2(xh+1)∥2, (50a)

−f−i,1(x−i,h+2) < −f−i,2(x−i,h+1)− β1τ−i,h+1∥F2(xh+1)∥2, (50b)

Still, from (48), we know (50a) can’t be true and (50b) is easy to realized by setting τ−i,h+1. Thus, the

xi,h+1 will not be updated and x−i,h+1 will be updated and push the CP time back to 1. Following a similar

analysis, we know x−i,h+2 > x−i,h+1 and x−i,h+2 < r−i and are supposed to increase to reach the critical

point in subsystem 2 until converge, which indicates the left part of the critical point in the objective

function −f−i,2, where its gradient −f ′
−i,2 < 0. Thus, we have −f−i,2(x−i,h+2) < −f−i,2(x−i,h+1).

Now, let’s look at the entire trajectory, we have xi,h+2 = xi,h+1 < xi,h for agent i and x−i,h+2 >

x−i,h+1 = x−i,h for agent −i, indicating

− fi,1(xi,h+2) = −fi,1(xi,h+1) < −fi,1(xi,h), (51a)

− f−i,2(x−i,h+2) < −f−i,2(x−i,h+1) = −f−i,2(x−i,h). (51b)

Considering trajectory starting from subsystem 2, switching to subsystem 1, then back to subsystem

2 can show the −fi,2(xi,h+2) > −fi,2(xi,h) and −f−i,1(x−i,h+2) > −f−i,1(x−i,h) following the similar

analysis, we omit the redundant math.

Now, let’s analyze if the trajectory starts from subsystem 1 and stays more steps in subsystem 2 before

going back to subsystem 1. Given the switching pair h, h as described in Theorem 7, i.e, h = h =

1, h < h < h, h = 2. For agent −i, staying in subsystem 2 gradually increases x−i until it goes back

to subsystem 1 or reaches the critical point of −f−i,2 in subsystem 2, which means converging to the

critical point. Similar to (51b), we have

x−i,h > x−i,h−1 > ... > x−i,h+1 = x−i,h, (52a)

− f−i,2(x−i,h) < −f−i,2(x−i,h−1) < ... < −f−i,2(x−i,h+1) = −f−i,2(x−i,h). (52b)

where the first inequality and last equality equality comes from (51b).

For agent i, although xi,h will increase in subsystem 2, the xi,h, x−i,h still within subsystem 2, and

we have

max{xi,h + x−i,h|h ∈ (h, h)} < min{xi,h + x−i,h, xi,h + x−i,h} (53a)
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Because (50a) can’t be true and (50b) is easily satisfied and x−i,h gradually increase in subsystem 2 as

described in (52), the system switch must be activated by agent −i. This means

x−i,h < max{x−i,h|h ∈ (h, h)} < x−i,h, (53b)

Combined with (51a), we have

xi,h > max{xi,h|h ∈ (h, h)} = xi,h, (53c)

where the first inequality is obtained due to two cases: i) if xi,h + x−i,h < xi,h + x−i,h, and we know

x−i,h < x−i,h from (53b), thus, xi,h > xi,h; ii) if xi,h+x−i,h ≥ xi,h+x−i,h, we know (53a) is equivalent

to

max{xi,h + x−i,h|h ∈ (h, h)} < xi,h + x−i,h, (53d)

and due to (53b), x−i,h < max{x−i,h|h ∈ (h, h)}, thus, xi,h > max{xi,h|h ∈ (h, h)}. Thus, according

to (53c), we have

−fi,1(xi,h) < −fi,1(xi,h) (53e)

This proves the Theorem by showing −fi,1,−f−i,2 reduce and −fi,2,−f−i,1 increase if Xi,1 + xi >

Xi,2 − xi, following Theorem 6, we know the system will converge to either the switching surface

fi,1 + f−i,1 = fi,2 + f−i,2 or the critical points −ri (F1(x) = 0) when S1,0 ≥ S2,0 or ri (F2(x) = 0)

when S1,0 < S2,0.

APPENDIX E

PROOF OF THEOREM 9

Proof. We first show the optimal solution from the centralized model as described in (15). Under the

following condition, we can easily get both agents’ solution as the critical point ri, r−i by first-order

optimality condition.

−ri − r−i ≤ b, if S1,0 ≥ S2,0, (54a)

ri + r−i ≥ b, if S1,0 < S2,0. (54b)

Otherwise, the system demand will be balanced in the two periods, i.e., xi + x−i = b, and we add the

constraints with Lagrange multipliers λ

L(x, λ) = πmax{S1(x), S2(x)}+ αix
2
i + α−ix

2
−i + λ(b− xi − x−i), (54c)
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∂L
∂xi

= ±π + 2αixi − λ = 0, (54d)

∂L
∂x−i

= ±π + 2α−ix−i − λ = 0, (54e)

∂L
∂λ

= xi + x−i = b, (54f)

xi =
α−i

αi + α−i
b, x−i =

αi

αi + α−i
b, (54g)

where the sign of ± is determined by the system baseline demand S1,0, S2,0. Overall, the solution for

the centralized model (15) is

xi =
α−ib

αi + α−i
, x−i =

αib

αi + α−i
, if − ri − r−i ≤ b ≤ ri + r−i (55a)

xi = −ri, x−i = −r−i, if − ri − r−i > b (55b)

xi = ri, x−i = r−i, if ri + r−i < b (55c)

Note that the peak shaving effectiveness defined in the theorem statement is equal to directly comparing

the x∗cp,i+x∗cp,−i with x∗cen,i+x∗cen,−i because the baseline demand is the same in both models. Combine

with the game solution in Theorem 5, under the concave game conditions, we have x∗cp,i = x∗cen,i =

±ri, x
∗
cp,−i = x∗cen,−i = ±r−i, indicating the peak shaving effectiveness at equilibrium equal to 1.

Under the non-concave game and quasiconcave game conditions, it is easy to see both game model and

centralized model will balance system demand, i.e., x∗cp,i + x∗cp,−i = x∗cen,i + x∗cen,−i = b, meaning that

the peak shaving effectiveness at equilibrium also equal to 1. This proves the theorem.

APPENDIX F

PROOF OF THEOREM 10

Proof. Recall the centralized model solution from Theorem 9, the x∗cen,i is the same under quasiconcave

and non-concave game conditions, i.e.,

x∗cen,i =
α−ib

αi + α−i
, x∗cen,−i =

αib

αi + α−i
. (56)

Although the game solution is different under these two conditions, we can denote it as x∗i , and according

to the definition of PoA (19a), the PoA is

P =
fi(x

∗) + f−i(x
∗)

fi(x∗cen) + f−i(x∗cen)
=

πS + αix
∗2
i + α−ix

∗2
−i

πS + αi(
α−ib

αi+α−i
)2 + α−i(

αib
αi+α−i

)2
(57a)

By replacing b = x∗i + x∗−i, we have

P =
πS + αix

∗2
i + α−ix

∗2
−i

πS +
αiα2

−i(x
∗
i+x∗

−i)
2+α2

iα−i(x∗
i+x∗

−i)
2

(αi+α−i)2

=
(πS + αix

∗2
i + α−ix

∗2
−i)(αi + α−i)

πS(αi + α−i) + αiα−i(x∗i + x∗−i)
2
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=
πS(αi + α−i) + αiα−i(x

∗2
i + x∗2−i) + (αix

∗
i )

2 + (α−ix
∗
−i)

2

πS(αi + α−i) + αiα−i(x∗2i + x∗2−i) + 2αiα−ix∗ix
∗
−i

, (57b)

The first two terms in the denominator and nominator are the same, thus, the difference between

denominator and nominator is

(x∗iαi)
2 + (x∗−iα−i)

2 − 2x∗ix
∗
−iαiα−i = (x∗iαi − x∗−iα−i)

2, (58)

We then know P will increase with (αix
∗
i − α−ix

∗
−i)

2, and P is continuous/differentiable function

regarding α and x∗i , thus ∂P/∂[(αix
∗
i − α−ix

∗
−i)

2] > 0. Note that the shifting cost is αix
∗2
i and αix

∗
i =

∂(αix
∗2
i )/∂x∗i , thus we call it marginal shifting cost.

APPENDIX G

PROOF OF THEOREM 11

Proof. Under the concave game condition, from Theorems 5 and 9, if S1,0 ≥ S2,0, we have

x∗i = −ri, x
∗
−i = −r−i, x

∗
cen,i = −ri, x

∗
cen,−i = −r−i, (59)

and change the critical point from −ri to ri will get the solution when S1,0 < S2,0. Thus, x∗i = x∗cen,i

for i,−i and P = 1, indicating concave game condition is equivalent to centralized condition.

From Theorem 10, we know the PoA under quasiconcave and non-concave game conditions can be

written as (57b), and nominator minus denominator is (αix
∗
i − α−ix

∗
−i)

2 ≥ 0. Thus, P ≥ 1 under

these two conditions, indicating quasiconcave and non-concave games always cause higher anarchy than

concave games.

Then Given fixed π, S, α > 0, the PoA (57b) is only affected by the solution structure x∗i , x
∗
−i. Note

that Xi,1, Xi,2, X−i,1, X−i,2 could be variant such that Xi,1 + Xi,2 + X−i,1 + X−i,2 = 2S, which may

cause quasiconcave or non-concave game condition, i.e., all agent i,−i satisfy the following or not,

− π

2αi
≤ bi =

Xi,2 −Xi,1

2
≤ π

2αi
. (60)

We basically fixed the other parameters that appeared in the PoA expression of (57b) to explicitly show

the influence of the game type change. According to Theorem 5, we know both quasiconcave and non-

concave games balance the system demand in the two time periods, i.e., x∗i+x∗−i = b. For the quasiconcave

game, x∗i = bi, x
∗
−i = b−i, and satisfy the (60), while for non-concave game, x∗i = ±ri, x

∗
−i = b ∓ ri,

and bi > ri or bi < −ri. Suppose x∗i = ri, x
∗
−i = b− ri, then the condition is bi > ri and b−i < b− ri,

indicating

(αibi − α−ib−i)
2 > (αiri − α−i(b− ri))

2. (61)
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If x∗i = −ri, x
∗
−i = b + ri, the situation is similar and we omit the redundant math here. Thus, the

quasiconcave game causes higher PoA than the non-concave game under fixed π, S, α > 0. These finish

the proof of the Theorem.

APPENDIX H

PROOF OF PROPOSITION 12

Overview of the proof : We derive two lemmas to show the existence and uniqueness of NE in the

multi-agent CP game G′, respectively. We first show the CP game G′ exists NE (Lemma 17) and show

the NE exists in Lemma 17 is unique (Lemma 18). We first introduce two concepts.

(1) Payoff security (Reny [38]). Agent i can secure the payoff fi(xi, x−i)−ϵ ∈ R at x ∈ X iff for every

ϵ > 0, there exist a x̂i ∈ Xi such that fi(x̂i, x′−i) ≥ fi(xi, x−i)− ϵ for every x′−i in some neighborhood

of x−i. Furthermore, we say that a game G′ is payoff secure iff every player i can secure payoff for

every xi ∈ Xi.

(2) Diagonally strictly concave (Rosen [39]). Define the pseudo-gradient of the sum of all players’

payoff functions
∑

i∈N fi(x) with transport symbol T and total differential operator ∇ as

F (x) = [∇1f1(x), · · · ,∇NfN (x)]T . (62a)

Then the function
∑

i∈N fi(x) is diagonally strictly concave for x ∈ X if for every xa, xb ∈ X we have

(xa − xb)F (xb) + (xb − xa)F (xa) > 0. (62b)

Among them, payoff security means every agent can secure a payoff value in any strategy profile if

they have a strategy that provides at least this value, even if other players slightly change their strategies.

We also have the sufficient conditions for diagonally strictly concave function from Rosen [39], namely

that the symmetric matrix G(x) +GT (x) be negative definite for x ∈ X , where G(x) is the Jacobian of

F (x) with respect to x. We then introduce the existence lemma.

Lemma 17. Existence. The multi-agent two-period CP game G′ as described in (20) and (21b), has a

pure-strategy NE as defined in Definition 1.

Proof. According to Reny [38], a compact, convex, bounded and quasiconcave game has a pure strategy

NE if the sum of the player’s payoff functions is u.s.c. as defined in Definition 1 in the whole strategy

set and the game is payoff security as defined in Definition 1. Thus, we focus on (a) the sum of the

player’s payoff functions, i.e.,
∑

i∈N fi(x), is u.s.c. in x ∈ X and (b) the game G′ is payoff secure, to

prove the existence of pure-strategy NE.
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(a). By summing all player’s payoff functions,∑
i∈N

fi(x) = −π
∑
i∈N

(Xi,1 + xi)I(S1 − S2)− π
∑
i∈N

(Xi,2 − xi)I(S2 − S1)−
∑
i∈N

αix
2
i

= πS1I(S1 − S2)− πS2I(S2 − S1)−
∑
i∈N

αix
2
i . (63)

This function is u.s.c. according to Definition 1 due to πS1 = πS2 when S1 = S2.

(b). We then show that each player is payoff secure by analyzing their strategies. According to Definition

1, given any strategy pair (xi, x−i) and for any ϵ > 0, agents i,−i can secure the payoff fi(xi, x−i)− ϵ

and f−i(xi, x−i)− ϵ. Note that here −i denotes all agents but i.

Suppose the CP time is t = 1, i.e., S1 ≥ S2, if one of the agent −i slightly increases x−i, the

CP time is still 1, and agent i’s payoff is the same if agent i keeps the strategy profile xi; if one of

the agent −i slightly decrease x−i, CP time is possible to change, but agent i can secure the payoff

fi(xi, x−i)− ϵ by slightly reducing its strategy xi. Basically, there exist a δ > 0 small enough that satisfy

fi(xi + δ, x′−i) > fi(xi, x−i)− ϵ for all S′
1 = Xi,1 + xi + δ +

∑
−i∈N (X−i,1 + x′−i) > S2. Thus, agents

i, i ∈ N are payoff secure, and CP time t = 2 follows the same analysis. Thus, the CP game is payoff

secure.

According to the Reny [38], the CP game has a pure-strategy NE.

Lemma 18. Uniqueness. The pure-strategy NE (x∗i , x
∗
−i) as described in Lemma 17 is unique and obtained

when (23) hold.

Proof. According to Rosen’s method [39], if the sum of the player’s payoff function is diagonally strictly

concave as defined in Definition 1, then the equilibrium point described in Lemma 17 is unique if the

constraints in the strategy set are concave, i.e., X = {x|h(x) ≥ 0}, where h(x) is a concave function.

We first study the uniqueness of pure-strategy NE in each subsystem 1 and 2 corresponding to CP

time in 1 and 2, with the strategy set X1,X2. In strategy set X1, we have the weighted non-negative sum

as defined in Definition 1, here we slightly abuse our notation by extending two agents i,−i to N agents

i ∈ N , ∑
i∈N

fi(x) = −π
∑
i∈N

(Xi,1 + xi)−
∑
i∈N

αix
2
i . (64)

The Hessian H with respect to x is G = GT = −2diag(α1, · · · , αN ), where diag(·) : RN → RN ·N . This

shows that G+GT is obviously negative definite, thus, we know the sum of the player’s payoff function

is diagonally strictly concave. This means, according to Rosen’s method, there is a unique NE in the

strategy set X1. Following the same analysis, we can conclude there is a unique NE in the sub-strategy

set X2.
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Now, the difficult part of proving this Lemma lies in the switching between two sub-strategy sets.

Thus, we separate three cases according to the CP time to analyze the NE.

• Case (i): CP time is always 1, i.e., S1(x) ≥ S2(x),∀x ∈ X ;

• Case (ii): CP time is always 2, i.e., S1(x) < S2(x), ∀x ∈ X .

• Case (iii): CP time changes during the gaming process, i.e., ∃x′, x′′ ∈ X , S1(x
′) − S2(x

′) ≥

0, S1(x
′′)− S2(x

′′) < 0;

We first show Cases (i) and (ii) can’t exist under the quasiconcave conditions (21b) because only

one subsystem is active during the entire solution process and the game is concave. Taking case (i) for

example, mathematically, we have, S1(x) ≥ S2(x), ∀x ∈ X = X1, i.e.,

S1(x) =
∑
i∈N

(Xi,1 + xi) ≥
∑
i∈N

(Xi,2 − xi) = S2(x), (65a)∑
i∈N (Xi,2 −Xi,1)

2
= b ≤

∑
i∈N

xi, (65b)

which aligns with the conditions of the concave game. The same analysis can be applied to case (ii),

where CP time is always 2. Thus, we know both cases (i) and (ii) can’t exist under the quasiconcave

conditions.

We then analyze Case (iii) and start with the two-agent setting with agent i,−i. We first note that the

CP charge, either π(Xi,1 + xi) or π(Xi,2 − xi), is relatively greater compared with penalty αix
2
i for all

agents because the CP time can change in the case (iii). From the best response perspective, suppose

the CP time is 1, i.e., S1 = S2 + δ, where δ is an infinitesimal number. Now, if agent i benefits by

reducing xi, which changes CP time to 2. This indicates the demand of agent i in time 1 is greater

than time 2, i.e., Xi,1 + xi ≥ Xi,2 − xi. Now if agent −i’s demand in time 1 is less than time 2, i.e.,

X−i,1 + x−i < X−i,2 − x−i, then CP time change from 1 to 2 harms agent −i’s benefit, so agent −i

want to push the CP time back to 1 by increasing x−i; if X−i,1 + x−i ≥ X−i,2 − x−i, CP time changes

to 2 means agent −i can benefit by shifting x−i away from time 2, i.e., still increase x−i. This means

the best response of agent −i’s is always adversarial to that of agent i.

This shows agents are fully competitive; basically, if agent i can benefit from changing strategy, that

strategy harms another agent’s benefit. This is similar to the zero-sum game setting. Thus, we can apply
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the following min-max formulation to analyze the best responses,

x∗i = argmax
xi

min
x−i

fi(xi, x−i) = argmax
xi



−π(Xi,1 + xi)− αix
2
i ,

xi ≥ bi, xi ≥ b− x∗−i

−π(Xi,2 − xi)− αix
2
i ,

xi < bi, xi < b− x∗−i

. (66a)

where x∗−i is the optimal solution for agent −i following the same structure, and the first and second case

corresponds to CP time 1 and 2. By applying the first-order optimality condition, the optimal solution of

xi is

x∗i =


max{−ri, b− x∗−i, bi}, S1 ≥ S2

min{ri, b− x∗−i, bi}, S1 < S2

. (66b)

The optimal solution for agent −i follows the same structure

x∗−i = argmax
x−i

min
xi

f−i(xi, x−i) =


max{−r−i, b− x∗i , b−i}, S1 ≥ S2

min{r−i, b− x∗i , b−i}, S1 < S2

. (66c)

According to (5), −ri ≤ bi ≤ ri, −r−i ≤ b−i ≤ r−i, we know when x∗i , x
∗
−i reach optimal solution,

if S1 ≥ S2, and x∗−i = max{b− x∗i , b−i}. The same solution holds for x∗i , i.e., x∗i = max{b− x∗−i, bi}.

Then, according to (66b) and (66c), the only solutions are x∗i = bi, x∗−i = b−i, and the conditions are

Xi,2 +X−i,2 − x∗i − x∗−i = S2 = Xi,1 +X−i,1 + x∗i + x∗−i = S1. (67)

Then, we use the two-agent solution to analyze the solution in the N -agent setting. Given that all

agents are capable, define a partition of set N into two disjoint subsets, denoted as Na, Nb, such that

Na∪Nb = N,Na∩Nb = ∅, and the demand for these two subsets is unequal in at least one time period,

i.e.,

{
∑
i∈Na

(Xi,1 + xi) ̸=
∑
i∈Nb

(Xi,1 + xi)} ∪ {
∑
i∈Na

(Xi,2 − xi) ̸=
∑
i∈Nb

(Xi,2 − xi)}. (68)

Then treat these two sets as two agents with strategy xa, xb and apply the two-agent solutions, we know

the two sets will balance their demand in the two time periods, i.e., the following is true for sets Na, Nb,

x∗a =

∑
i∈Na

Xi,2 −
∑

i∈Na
Xi,1

2
=

∑
i∈Na

(Xi,2 −Xi,1)

2
=

∑
i∈Na

bi =
∑
i∈Na

x∗i . (69)

Then, applying the same partition to Na, Nb to get the subsets Na,a, Na,b and Nb,a, Nb,b, and applying

the two-agent solutions, we still know the two subsets will balance demand in the two time periods, i.e.,∑
i∈Na,a

x∗i =
∑

i∈Na,a
bi for sets Na,a, Na,b, Nb,a, Nb,b. Iterating applying the partition to each subset to
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get corresponding two subsets, the subset will finally become a singleton and we have x∗i = bi, i ∈ N ,

and ∑
i∈N

(Xi,2 − x∗i ) = S2 =
∑
i∈N

(Xi,1 + x∗i ) = S1. (70)

This shows the NE will always be obtained when S1 = S2 when the game is quasiconcave, i.e., all

agents’ are capable as described in Proposition 4. This also means during the game, subsystems 1 and 2

are active interactively, and the agent’s strategy set switches between X1 and X2 and finally converge at

the connecting point of both strategy set S1 = S2. This means there is a unique equilibrium point in the

entire strategy set X . Indeed, all agents will minimize the payment associated with S1, S2 imbalance as

any imbalance results in a significant CP charge change caused by the opponent’s strategy.

Thus, we conclude that the NE as described in (23) is unique and proves this Lemma.

Proof of Proposition 12. We first show the quasiconcave CP game G′ as described in (20) and (21b) has

pure-strategy NE based on Lemma 17. Then, we prove the NE existed in Lemma 17 is unique based on

Lemma 18 and the unique NE is obtained as described in (23).

APPENDIX I

PROOF OF PROPOSITION 13

Proof. Given S1,0 < S2,0. We first assume two virtual agents as CP agent and non-CP agent. We denote

the strategy as xcp, baseline demand as Xcp,2 =
∑

i∈Ncp
Xi,2, Xcp,1 =

∑
i∈Ncp

Xi,1, balance point

bcp = (Xcp,2 −Xcp,1)/2, and critical point rcp =
∑

i∈Ncp
ri for CP agent, and change the subscript to

ncp for non-CP time agent. Note that for CP agent Xcp,1 < Xcp,2 (the same definition with CP-time

agent) and non-CP agent vice verse, we also have bcp + bncp = b.

Then, from Theorem 5, we know these two virtual agents will balance the system demand at equi-

librium. Depending on which agent reaches the critical point first, the best strategy for one agent is

the critical point and the other is to balance the left unbalanced system demand. Suppose the CP agent

reaches the critical point first, i.e., the demand shifting of the non-CP agent cannot be offset by the CP

agent, meaning that the CP agent can’t flatten the system demand given the non-CP agent’s shifting even

if the CP agent shifts the maximum amount of demand. We can express the condition as

rcp < bcp,−rncp − rcp ≤ b ≤ rncp + rcp, (71a)

and the NE between these two virtual agents is

x∗cp = min{rcp, bcp} = rcp, x
∗
ncp = b− rcp, (71b)
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We then aggregate CP-time agents and non-CP-time into the CP-time agent set and non-CP-time agent

set and fixed the agent in each set, as the CP-time agent and non-CP-time agent are defined based on

their baseline demand conditions. Obviously, the baseline demand, balance point, and critical point are

equivalent between the set of CP agents and the virtual CP agent. However, they are not totally equivalent

because their strategies are different. The strategy for the CP-time agent set is determined by each agent

x∗i , i ∈ Ncp. The non-CP-time agent set follows the same idea. Note that the same baseline demand and

critical point indicate their best response rationale is the same; basically, the virtual CP agent benefits by

shifting demand away from the CP time, and we have the same for the agents in the CP-time agent set.

From Theorem 5, we know each agent’s maximum shifting capacity is bi, i.e., x∗i = min{ri, bi}, and

from the condition (71a), we know although the CP-time agent set and virtual CP agent have the same

conditions, CP-time agent set can’t reach the best strategy of the virtual CP agent due to the following∑
i∈Ncp

min{ri, bi} <
∑
i∈Ncp

ri = rcp = x∗cp <
∑
i∈Ncp

bi. (72)

Note that the best response of both the virtual CP agent and CP-time agent set is to shift demand away

from the CP time, and the benefits they obtained monotonically increase with the shifting amount. From

(72), we know the maximum shifting amount of the CP-time agent set is less than the best strategy of

the virtual CP agent, indicating the best strategy for the CP-time agent set is their maximum shifting

amount
∑

i∈Ncp
min{ri, bi}.

We then verify in this case the non-CP-time agent set will still balance system demand to get profits.

We first show the non-concave game condition still holds, which is equivalent between virtual agents and

sets of agents, i.e.,

−
∑

i∈Nncp

ri −
∑
i∈Ncp

ri = −
∑
i∈N

ri ≤ b ≤
∑

i∈Nncp

ri +
∑
i∈Ncp

ri =
∑
i∈N

ri (73)

Thus, under the condition (72) with
∑

i∈Ncp
x∗i =

∑
i∈Ncp

min{ri, bi}, the non-CP-time agent set can still

balance system demand. Then, we show the best response rationale is the same between the non-CP-time

agent set and the virtual non-CP agent due to the same baseline demand and critical point conditions.

From Theorem 5, we know the virtual non-CP agent benefited by shifting demand to the CP time in

response to the virtual CP agent’s strategy. Thus, the benefit of the non-CP-time agent set increases with

the shifting amount to the CP time because it offsets the shifting of the CP-time-agent set and further fills

the system demand difference when the CP-time-agent set reaches maximum shifting capability. Also,

due to
∑

i∈Ncp
min{ri, bi} <

∑
i∈Ncp

ri, we have b−
∑

i∈Ncp
min{ri, bi} > b−

∑
i∈Ncp

ri, meaning that

the non-CP-time agent set can actually get more benefit than the virtual non-CP agent.
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To conclude, the CP-time agents in the CP-time agent set with strategy x∗i = min{ri, bi}, i ∈ Ncp

form a best response to the non-CP-time agents in the non-CP-time agent set with strategy
∑

i∈Nncp
x∗i =

b−
∑

i∈Ncp
min{ri, bi} under the condition of∑

i∈Ncp

min{ri, bi} <
∑
i∈Ncp

bi,−
∑
i∈N

ri ≤ b ≤
∑
i∈N

ri; (74)

otherwise, the best strategy will be

x∗i = max{−ri, bi}, i ∈ Nncp,
∑
i∈Ncp

x∗i = b−
∑

i∈Nncp

max{−ri, bi}, (75)

corresponding to the condition∑
i∈Nncp

max{−ri, bi} >
∑
i∈Ncp

bi,−
∑
i∈N

ri ≤ b ≤
∑
i∈N

ri. (76)

Note that here, the set of agents is fixed, and we focus on the set level performance for the CP-time

agent set and non-CP-time agent set. Specifically, when the aggregated (set-level) demand of the CP-time

agent set is higher in the non-CP time, the CP-time agent set will perform as the non-CP-time agent set,

and meanwhile, the aggregated demand of the non-CP-time agent set must be higher in the CP time,

and the non-CP-time agent set perform as the CP-time agent set. This is similar to the two-agent case,

where they only exchange strategy when the relative relationship between their own peak time and CP

time changes.
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