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Motivation
Coincident peak (CP) charge - charge the customer based on their

demand at the system peak time, e.g., 4CP program in Texas [1]:

Charge the highest hour in each month between Jun. – Sep., and

count in the next year’s electricity bill.

Research gap - CP time realizes posterior and depends on all cus-

tomers’ strategies [2]→ currentwork focuses on predicting CPtime

and misses the interaction between customers [3, 4] → motivates

a game formulation.

Research question

Whether the game-
based framework 

workable for the CP 
shaving problem?

1
How do gaming 

consumers’
strategic behavior 

causes anarchy 
compared to the 

centralized method

2

Model and formulation
Two-agent two-periods CP shaving model

• X – baseline demand, 

• x – shifting strategy 

• S – system demand

• 𝛼 – shifting penalty parameters

CP charge at time 1 Agent i - game CP charge at time 2 

System peak time determination Shifting penalty

Centralized 

Agent i’s strategy -min{critical point ri = π/2αi, balance point bi =
(Xi,2 − Xi,1)/2}

Payoff

Demand shifting 

Demand

Time

Agent -i

Agent i

1 2

Agent i

Agent i charge

Agent -i charge

CP time = 2

Q1: NE exist, unique, stable, and reachable
Theorem –Nash equilibrium (NE) (informal)

The CP game could be concave, quasiconcave/discontinuous, and 
non-concave/discontinuous, and under the two-agent two-period 
setting, all types of CP games have unique pure-strategy NE.

Theorem – stability and convergence (informal)

• The CP game system is global uniform asymptotically stable if 
all customers' baseline demand is positive (Denoting system 
dynamics following the gradient of each agent’s payoff 
function)

• Gradient-based algorithms can converge with an updating rule 
from the finite difference approximation to the system 
dynamics (learning rate chosen from backtracking line search)
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(a) Two-agent concave game.
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(b) Two-agent quasiconcave game.

0 100 200 300 400 500 600
Iteration

0

2

4

6

8

10

12

14

C
os

t

Agent 1
Agent 2
Agent 3

Agent 4
Agent 5
Agent 6

(c) Multi-agent non-concave game

Figure 1. Convergence performance.

Extending to multi-agent two-period settings, everything still holds

except non-concave game NE is not unique, but CP time agent

(whose baseline peak demand is in the system baseline CP time)

and non-CP time agent still balances system demand.

Takeaway - Although the game type is variant, the game framework

is workable as the equilibrium exists, unique, stable, and reachable.

Q2: Peak shaving and anarchy
Theorem – peak shaving effectiveness (informal)

In all conditions (two-agent, multi-agent, all types of game), the 
peak shaving effectiveness of the game model is always the same 
as centralized model.

Takeaway - It is helpful for utilities/operators to apply the game

model because they care more about peak shaving.

Theorem – price of anarchy (PoA) with agent equity (informal)

In two-agent settings, PoA (P) increases with inequity among 
agents, measured by the marginal shifting cost.

Theorem – PoA with game type (informal)

Under two-agent settings, fixed system conditions  (system 
demand, CP charge price) Agent flexibility reduce – 𝛼, 𝑋!,#, 𝑋!,$

Takeaway - (1) CP shaving mechanisms can consider effectiveness

and fairness together – balance agents’ marginal shifting cost; (2)

Greater agent flexibility amplifies system inefficiency, reflected by

the CP game type change; (3) Concave CP game equivalent to the

centralized model.

Remark – game type with agent number 

With agent numbers increasing, games are more likely to be non-
concave games.
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Takeaway - (1) PoAof a small system is more sensitive to the agents’

flexibility (game type); (2) PoA of a large system is stable and can

diminish flexible agent’s influence; (3) Better to have large systems

regarding flexible agents, and small systems for inflexible agents.
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