Gaming on Coincident Peak Shaving: Equilibrium and Strategic Behavior
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Motivation

Coincident peak (CP) charge - charge the customer based on their
demand at the system peak time, e.g., 4CP program in Texas [1]:

Charge the highest hour in each month between Jun. - Sep., and
count in the next year’s electricity bill.

Research gap - CP time realizes posterior and depends on all cus-
tomers’ strategies [2] — current work focuses on predicting CP time
and misses the interaction between customers [3, 4] — motivates
a game formulation.

Research question
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Model and formulation
Two-agent two-periods CP shaving model

Agenti-game  CP charge at time 1 CP charge at time 2

rr}guxfi(a:i, z_i) = —m(Xi1 + 2:)I(S1(z) — S2(z)) — m(Xs2 — 2:)I(S2(z) — Si(z)) — iz},

System peak time determination

X — baseline demand,
S1(z) = X1+ X1 + 2 +2—; = S10 + @ + 24,
x — shifting strategy

So(z) =Xs0+ X jo—x;—x_; = S20 —x; — T,

S — system demand

r,eXi=Rr, e X ;=R a — shifting penalty parameters

Centralized z* € arg max — fi(x;, x—;) — f—i(xi, T—;)
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Q1: NE exist, unique, stable, and reachable

Theorem —Nash equilibrium (NE) (informal)

The CP game could be concave, quasiconcave/discontinuous, and
non-concave/discontinuous, and under the two-agent two-period
setting, all types of CP games have unique pure-strategy NE.

Theorem - stability and convergence (informal)

e The CP game system is global uniform asymptotically stable if
all customers' baseline demand is positive

* Gradient-based algorithms can converge with an updating rule
from the finite difference approximation to the system

dynamics
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(a) Two-agent concave game. (b) Two-agent quasiconcave game. (c) Multi-agent non-concave game

Figure 1. Convergence performance.

Extending to multi-agent two-period settings, everything still holds
except non-concave game NE is not unique, but CP time agent
(whose baseline peak demand is in the system baseline CP time)
and non-CP time agent still balances system demand.

Takeaway - Although the game type is variant, the game framework
Is workable as the equilibrium exists, unique, stable, and reachable.

Q2: Peak shaving and anarchy

Theorem — peak shaving effectiveness (informal)

In all conditions , the
peak shaving effectiveness of the game model is always the same
as centralized model.

Takeaway - It is helpful for utilities/operators to apply the game
model because they care more about peak shaving.

Theorem — price of anarchy (PoA) with agent equity (informal)

In two-agent settings, PoA (P) increases with inequity among
agents, measured by the marginal shifting cost. oP -0

O(azy — az*;)?]

Theorem — PoA with game type (informal)

Under two-agent settings, fixed system conditions

= Agent flexibility reduce — a, X; 1, X; »
(Quaswoncave game) > P(Non-concave game) > P(Concave game) = 1

Takeaway - (1) CP shaving mechanisms can consider effectiveness
and fairness together - balance agents’ marginal shifting cost; (2)
Greater agent flexibility amplifies system inefficiency, reflected by
the CP game type change; (3) Concave CP game equivalent to the
centralized model.

Remark — game type with agent number

With agent numbers increasing, games are more likely to be non-
concave games.
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Takeaway - (1) PoA of a small system is more sensitive to the agents’
flexibility (game type); (2) PoA of a large system is stable and can
diminish flexible agent’s influence; (3) Better to have large systems
regarding flexible agents, and small systems for inflexible agents.
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