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Abstract—As the adoption of smart home management devices
grows, residential consumers become increasingly responsive
to electricity prices. However, this price responsiveness cannot
continue indefinitely as prices increase. Modeling this saturation
effect is crucial to prevent demand response from becoming
too costly, especially for consumers. This paper proposes an
optimization model to design price response events that ensure
energy equity by considering the income status and response
saturation effect of each consumer. The proposed method uses
energy burden to measure energy equity and builds a piecewise
linear model to express the response saturation effect of each
consumer. We formulate the tariff design problem as a mixed
integer non-linear optimization model, which achieves a demand
reduction target while minimizing energy burden and sharing
the economic expense proportionally. We use real-world datasets
in a case study to obtain personalized electricity prices, energy
consumption, and energy burden for each consumer. We find
that personalized tariffs effectively reduce energy burdens. By
comparing the results with and without saturation effects, we
conclude that modeling saturation effects can reduce energy
burdens in demand reduction response events.

Index Terms—Demand response; saturation effect; energy
equity; tariff design; social characteristics

I. INTRODUCTION

Peak electricity demand is expected to continue to grow due
to electrification, adoptions of electric vehicles, and increasing
occurrences of weather extremes [1]. Demand response (DR)
is an effective method to incentivize consumers to adjust
energy consumption by setting specific electricity tariffs,
thereby reducing the system’s peak demand. However, higher
prices of electricity cannot reduce demand indefinitely. During
the 2021 winter storm Uri, the price of electricity surged
to $9,000/MWh in Texas. However, many consumers still
kept lights and heat on and eventually received outrageous
electricity bills of more than ten thousand [2]. Many reports
and research also mention the saturation effect of the price
response, indicating demand elasticity diminishes at high price
extremes [3], [4].

The saturation effect is critical to model a customer’s price
elastics but is often neglected in previous studies due to the
modeling difficulty. Previous research usually considers the
consumers’ price response as linear or quadratic functions [5],
[6]: modeling linearly prices response indicated by the change
of energy consumption [7]; designing quadratic function to ex-

press response behavior [8], [9]. Building optimization models
also incorporated price responses on the consumer side [10],
which generally uses a bi-level optimization structure. Some
research modeled the price response considering the influence
of price elastics and studied the influence of different kinds of
price elastics [11]. These studies expressed the price elastics
as constant values from empirical estimates [12], [13], or as
Gaussian distributions to represent elasticity variations [14].
Yet, previous price response studies focused on economics,
either to reduce consumer costs or increase utility profits.

Energy equity is another critical topic in tariff design to
ensure fair access to electricity, a fundamental need in modern
society [15], [16]. Previous tariff designs assume the same tar-
iff for all consumers. The electricity bill brought by the same
electricity tariff will have a disparate proportion in consumer
perception due to the difference in socioeconomic factors such
as income [17]. This has resulted in some consumers opting
for power outages to save money, which reduces life quality
and equitable access to energy [3]. Extant research formulates
a bi-level framework to study the energy equity between
prosumers and consumers in distributed energy transitional
energy systems, introducing energy expenditure incidence to
trade-off the prosumers’ and consumers’ costs [18]. Multi-
objective optimization models considering economic, social,
and environmental factors are also adopted to develop justice-
cognizant tariffs [19]. However, equitable tariff designs are
significantly influenced by consumers’ saturation effect, which
is determined by various social factors and response behaviors.
Furthermore, consumers’ response behaviors tend to vary over
time based on their energy consumption profiles. These factors
present new challenges for tariff design, as disregarding the
saturation effect or inaccurately considering it will reduce the
tariffs effectiveness for DR and make it difficult to maintain
equity among consumers.

To address the aforementioned research gap, this paper
proposes an optimization model to design DR tariffs while
achieving energy equity considering consumer-specific satura-
tion effects. The paper provides the following contributions:

1) We use energy burden to measure energy equity and
model response saturation effects of each consumer based
on a piecewise linear model. We thus formulate the tariff
design problem as a mixed-integer non-linear program-
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ming (MINLP) problem with the goal of achieving a
demand reduction target while ensuring energy equity.

2) We divide high and low-income consumers according
to their energy burden and build their tariff model to
minimize the difference between the energy burden and
the average value and share the cost equally, respectively.

3) Our case study employs real-world datasets to design
individualized electricity tariffs for each consumer in
demand reduction events according to their social charac-
teristics to achieve energy equity and show the necessity
to consider the saturation effect.

The remaining of the paper is organized as follows: Sec-
tion II introduces the consumers’ price response and tariff
design model. Section III presents the dataset and computation
results, and Section VI concludes the paper with a discussion
on future directions.

II. MODEL AND FORMULATION

We first present a piece-wise linear model for consumers’
saturation effect, then present the tariff design optimization
problem.

A. Consumers’ individual price response with saturation effect

Each consumer will have individual price responses due to
their unique income and electricity usage preferences and the
operating time slots. Besides, consumers’ price response has
the saturation effect, i.e., when the price reaches a very high or
very low level, load consumption changes a little or even keeps
constant [4]. Under this effect, consumers’ DR may differ from
quadratic or linear prices response used by most studies.

Fig. 1 (a) [3], [4] shows consumers’ price response with
saturation effects. This curve can be linearized by multiple
linear segments. The dynamic electricity tariff is designed
as three types of prices during load peak, load valley, and
normal load period. Therefore, consumers’ price response can
be linearized by four line segments, shown in Fig. 1 (b). The
separating points are low prices in the peak load period, high
prices in the load valley period, and normal prices in normal
load periods, denoted by πlow, πhigh, πmed, respectively. The
linearized model is expressed as follows:

€/kWh

(a) Actual price response

€/kWh

(b) Linearized prices response

Fig. 1. Consumer’ prices response with saturation effect.

Di,t(πi,t) =


Di,t,max, if 0 ≤ πi,t ≤ πlow;

ai,t,1 ∗ πi,t + bi,t,1, if πlow ≤ πi,t ≤ πmed;

ai,t,2 ∗ πi,t + bi,t,2, if πmed ≤ πi,t ≤ πhigh;

Di,t,low, if πhigh ≤ πi,t

(1)
where i is the index of the consumer, i ∈ N ; t is the index of
time slots, t ∈ T ; πi,t is the electricity price of the consumer
i in time slot t; Di,t(πi,t) is the load demand of consumer
i in time slot t, which is the function of each consumer’s
electricity price; ai,t,1, ai,t,2, bi,t,1, bi,t,2 are parameters of the
price response function in the second and third segments,
which shows consumers’ individual prices response are differ-
ent for each other; Di,t,max, Di,t,min are the individual energy
demand when reaching saturation part of low prices and high
prices.

We reformulate these piece-wise linear functions by in-
troducing binary variables as the saturation curve is neither
convex nor concave:

vi,t,1 ∗ πlow ≤ πi,t,1 ≤ πlow (2)
(πmed − πlow) ∗ vi,t,2 ≤ πi,t,2 ≤ (πmed − πlow) ∗ vi,t,1 (3)
(πhigh − πmed) ∗ vi,t,3 ≤ πi,t,3 ≤ (πhigh − πmed) ∗ vi,t,2 (4)
0 ≤ πi,t,4 ≤ G ∗ vi,t,3 (5)
vi,t,1 ≥ vi,t,2, vi,t,2 ≥ vi,t,3 (6)
πi,t = πi,t,1 + πi,t,2 + πi,t,3 + πi,t,4 (7)
Di,t = Di,t,max − ai,t,1 ∗ πi,t,2 − ai,t,2 ∗ πi,t,3 (8)

where G is a big value; vi,t,1, vi,t,2, vi,t,3 ∈ {0, 1} are binary
auxiliary variables correspond to endpoint πlow, πmed, πhigh;
πi,t,1, πi,t,2, πi,t,3, πi,t,4 are electricity prices in each segment.

B. Formulation of tariff design problem

We propose the following model for the energy equity
tariff design in demand reduction events. The overall goal is
to reduce the lower-income consumers’ energy burden while
keeping the DSO’s revenue. Therefore, high-income con-
sumers should share some of the cost according to the DSO’s
revenue balancing requirements and take the risk of demand
reduction to protect low-income consumers. Decision variables
in the optimization problem include tariff segments πi,t,j and
auxiliary binary variables vi,t,j , where j ∈ {1, . . . , 4} is the
segment index. The objective function is as follows:

min ∥Ei,t − Eave,t∥, ∀i ∈ Nlow (9)

Ei,t =
Di,t(πi,t) ∗ πi,t

Ii
(10)

where Ei,t is the energy burden of consumer i in time slot
t; Eave,t is the average energy burden of all consumers in
time slot t, which is a constant; Nlow is the set of low-income
consumers, which is determined when energy burden less than
the average value; Ii is the income of consumer i.

The energy burden reflects consumers’ electricity bills as a
percentage of their income. The larger the value, the higher the
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energy burden for the consumer. Low-income consumers tend
to have a more significant energy burden, and sometimes they
must cut off their energy usage to save money, reducing life
quality [3]. Therefore, to realize energy equity, it is beneficial
to reduce electricity prices for low-income consumers, either
with subsidies or refunds, to reduce their energy burden. On
the other hand, achieving energy equity does require higher-
income consumers to pay more bills to support the savings of
some lower-income consumers or to bear the load reduction
during DR.

Thus, the problem includes the following constraints:

s.t.(2− 6)∑
i∈N

Di,t ≤ αt ∗
∑
i∈N

Di,t,0,∀t ∈ T (11)

Ei,t ≤ θ ∗ Eini,t (12)

|(
∑
i∈N

πi,t ∗Di,t − Pini,t)| ≤ 0.5 ∗ Pini,t,∀t ∈ T (13)

Ei,t ≥ 0, πi,t ≥ 0, Di,t ≥ 0 (14)

where αt is the demand reduction ratio in time slot t; Pini,t

means the baseline profits, which is determined by the day-
ahead market electricity prices; θ is the price cap of all
consumers, which is reflected by energy burden; Di,t,0 is the
consumers’ demand with baseline electricity prices.

(11) shows the demand reductions in the DR events; (13)
shows that the operators’ profit from using the new electricity
tariff should within a range of baseline profit; (12) indicates the
consumers’ price cap, which means consumers cannot accepts
excessively high electricity prices according to their income
levels, and the price cap is reflected by the energy burden.
(14) shows the non-negative constraints of decision variables,
including prices, energy burden, and demand.

III. CASE STUDY

A. Datasets

In the case study, we use two datasets to derive the
saturation effects of energy equity tariff designs in demand
reduction events. One is from Low Carbon London (LCL)
project [20], which includes a real DR dataset, providing DR
profiles of 1100 consumers receiving time of use (ToU) tariffs
and 4400 consumers receiving non-ToU flat rate at 30-minute
granularity during the year 2013. The other is Commission for
Energy Regulation (CER) Smart Metering Project [21], which
includes over 5000 Irish consumers’ energy consumption data
and social survey data from 2009 and 2010. The energy
consumption is the 30-minute granularity, and social survey
data includes their income, family member, acceptable of
electricity prices, etc.

In the LCL project, consumers are separated into three
categories according to their income, named affluent, com-
fortable, and adversity. Besides, three different ToU tariffs
are designed, which are high (67.20p/kWh), low (3.99p/kWh),
and normal (11.76p/kWh). Consumers can adjust their energy
consumption according to the tariffs. Using support vector
machine (SVM) to get the baseline demand, denoted by D0,i,t,

which reflects the original energy consumption without ToU
tariffs.

With the baseline energy consumption and DR, the price
response behavior parameters used in (1) can be obtained as
follows:

ai,t,1 = ∆Di,t/(πmed − πlow) (15)
ai,t,2 = ∆Di,t/(πhigh − πmed) (16)
∆Di,t = Di,t −D0,i,t (17)

where πlow, πmed, πhigh corresponding to the low, normal, and
high ToU tariffs in LCL projects.

We select 100 consumers from the CER smart meter project
as the research object, obtain their daily energy consumption
data and income information and classify them into three cat-
egories according to the setting of LCL project, and different
categories have different price response behaviors. Then, using
consumers’ price response behavior from the LCL project
reflects their DR preference. Note that consumers of the two
projects have different energy consumption levels and price
responses. Thus, the price response data is mapped according
to the energy consumption ratio of CER consumers and LCL
consumers, and the unique electricity price response of CER
consumers can be obtained. Income is also mapped to each
time slot based on energy consumption per time slot and
used to calculate energy burden to differentiate low- and high-
income consumers, as shown in Table I. Note that consumers’
numbers are listed with their income level; some consumers
have a relatively high income but still belong to low-income
consumers due to their high energy consumption.

TABLE I
HIGH-INCOME AND LOW-INCOME CONSUMERS

High-
income

2 5 9 10 12 14 19 20 21 22 24 25 26 31 34 38 39 41 43 44
47 48 49 50 52 59 60 66 67 68 69 72 74 76 78 80 81 82 83
84 85 86 87 88 89 90 91 92 93 94 96 97 98 99 100

Low-
income

1 3 4 6 7 8 11 13 15 16 17 18 23 27 28 29 30 32 33 35 36 37
40 42 45 46 51 53 54 55 56 57 58 61 62 63 64 65 70 71 73
75 77 79 95

B. Demand response results with saturation effect

The case study considers a tariff design problem for a
specific DR event following the LCL project setting. Instead
of applying the same price to all households, we now consider
the utility provides individualized DR rates to all participants
based on their historical response data and income status to
achieve a targeted demand reduction (2%) while ensuring
energy equity, i.e., reduce demand by raising the price while
also making sure the high price does not pose an extra energy
burden to low-income consumers. The overall problem is
an MINLP model with quadratic and bi-linear objective and
constraints, and we solve the model using GUROBI 9.5.2 in
the YALMIP toolbox of MATLAB 2022b, which supports the
optimization of bi-linear terms [22]. The solving algorithm is
implemented using a computer with i5-8250 CPU 1.60 GHz,
16 G memory. The computation time for 100 users in a time
slot is about 5s.
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The individualized electricity tariffs for energy equity are
shown in Fig. 2. The tariffs reflect consumers’ actual energy
cost because consumers’ true price response is saturation.
Specifically, time-varying tariffs increase in high-income con-
sumers to reduce energy consumption, and restricted by the
price cap. Some low-income consumers prices also increase,
but the they are secondary choice due to the price cap of high-
income consumers.

Fig. 3 shows consumers’ energy consumption reduction
based on the response tariffs. Because of demand reduction
events, consumers’ load consumption should reduce. It is
obvious to see that the demand of high-income consumers
reduce more, and low-income consumers’ demand keep the
same or slightly reduce, which shows the effectiveness of our
approach in achieving energy equity during demand reduction
events. Most of the demand reduction are taken by the high-
income consumers with higher electricity prices. The demand
reduction of high-income consumer is also affected by their
baseline demand, e.g., consumer 90 reduce the most demand
(0.057) due to its higher baseline demand (2.163).
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Fig. 2. Tariffs for all consumers.
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Fig. 3. Energy consumption reduction for all consumers.

Fig. 4 shows the energy burden of all consumers. Low-
income consumers cannot reduce their energy burden by
excessively increasing their energy consumption in response
to prices. The reason is that operators’ profit cannot increase
or reduce their profit too much, consumers prices are restricted

by the cap of, and the whole system should reduce demand. It
is obvious that most demand reductions occur to high-income
consumers, proportionally increasing the energy burden of
most high-income consumers to the average of 6%. We also
design a ”One price” scenario with all consumers receiving
the same tariff of 15.85p/kWh. The comparison results show
that energy equity tariff design can reduce the energy burden
for low-income consumers, and transfer these energy burden
to high-income consumers to some extant, which is a fair way
to reply to the demand reduction event.
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Fig. 4. Energy burden results for all consumers.

C. Comparison without saturation effect

This section compares the electricity tariff with and without
the saturation effect. The latter formulates a linear model
without the first and fourth segments of Eq. (1), and Fig. 5
shows the comparison results. Compared with the saturation
scenarios, the linear scenario produces high tariffs for most
high-income consumers. The reason is that energy consump-
tion continues to decrease as tariff increase, and operators
should set high electricity tariffs to maintain profits. As the
figure shows, many of the tariffs exceed the price cap, which
is unrealistic. Reducing these tariffs to the cap will result in
profit losses for operators or less energy equity for consumers.

Moreover, since the saturation scenario reflects the actual
price response curve, operators will profit more if they set
tariffs without considering the saturation effect. The differ-
ence in consumers’ energy cost shows in Fig.6 (calculated
by Linear scenario minus Saturation scenario). Cost savings
are lower for lower-income consumers because their tariff
changes are smaller, meaning they do not receive high tariffs,
which means they don’t receive high tariff and are protected
during the demand reduction event. However, most high-
income consumers will pay more bills without the saturation
influence, which is unfair to them. With enough income, these
consumers may invest in photovoltaic devices and leave the
DR program, bringing shock to the system. Thus, Considering
the saturation effect in the design of energy equity tariffs
can prevent operators from setting high and outrageous tariffs
for high-income consumers to make enough profits, thereby
reducing high-income consumers’ expenditures.
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Fig. 5. Comparison of electricity prices.

(a) High-income consumers (b) Low-income consumers

Fig. 6. Consumers’ cost saving in Saturation and Linear scenarios.

IV. CONCLUSION

This paper proposes a tariff design method for demand
reduction events while achieving energy equity, considering
the saturation effects of each consumer. Based on a dataset
from a practical DR project, we obtain the personal price
response for each consumer in different time slots and use it
in another real dataset to calculate the energy equity tariff and
corresponding energy consumption. The results show that the
tariffs can reduce the total energy burden by 13.7% compared
with the same high prices charged for all consumers during
a demand reduction event. Consumers respond to demand
reduction events in an equitable manner, with higher-income
consumers’ energy burdens increasing proportionally to their
income levels, while some lower-income consumers are pro-
tected from the demand reduction event. We also benchmark
with scenarios without considering saturation effects, and
the results demonstrate that operators can set unreasonably
high prices for most high-income consumers, significantly
increasing high-income consumers’ energy costs, which may
discourage them from participating in future DR programs.
The main constraint with the proposed approach is the com-
putation complexity as it uses MINLP, while future research
will investigate alternative methods more efficiently optimize
tariffs for a large number of participants. Our future works also
plan to consider response uncertainties in the tariff design.
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