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Prudent Price-Responsive Demands

*  Economic: seeing ahead, sagacity

* If uncertain events happen, prudent
decision-makers will do sth. to respond

to the event

* Time-dependent system:

Decision makers do sth. ahead of time

Uncertainty

\ 4

Demand

Time

\4

Time
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Toy example:

Suppose you have a
with

You need to decide on

until the price is realized

Now, | told you

Future price

o
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and participate in the
starting now
, but the

»
»
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Problem formulation
Main Results

Case Study and Conclusion
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Background

Motivation
* United States DER integration increase e Consumers installed more smart home devices
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https://en.wikipedia.org/wiki/Solar_power_in_the_United_States
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Consumers become more responsive
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Background

Dynamic prices incentivize consumers’ responsiveness — uncertainty

* Wholesale markets are inherently uncertain.

Ehe New York Eimes

His Lights Stayed on During Texas’
Storm. Now He Owes $16,752.

After a public outery from people like Scott Willoughby, whose
exorbitant electric bill is soon due, Gov. Greg Abbott said
lawmakers should ensure Texans “do not get stuck wi

somacmenes iy \Wholesale consumers
e o 0 D bear huge uncertainty

Mr. Willoughby is among scores of Texans who have reported
skyrocketing electric bills as the price of keeping lights on and
refrigerators humming shot upward. For customers whose
electricity prices are not fixed and are instead tied to the

fluctuating wholesale price, the spikes have been astronomical.

https://en.wikipedia.org/wiki/Solar_power_in_the United_States
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Utility companies adopt dynamic tariffs to incentivize

demand responses.

Ameren Power Smart Pricing in lllinois

Hourly Prices for April 21, 2024

) N Y
< Previous Day ) Today ( Tomorrow » )
J o —

A/

Retail consumer bear -
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https://www.coned.com/en/accounts-billi our-bill/time-of-use
h : rpnet.com/price-plans/residential-electric/tim e-of-

Understand complex risk-aware behaviors facing (price) uncertainty
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Background

Literature
* Data-driven * Model-driven: Adopt decision-making models with
utility functions to represent consumers’ decision-
Infrastructure making process

e Quadratic ax? + bx +c
* Piecewise linear

Privacy .
E if Qt < V¢ (E)
https://www.javatpoint.com/group-discussion et - /Ut_l(gt) lf /Ut (E) § Qt g /Uf(o)
Less data-driven previous works 0 if 0 > v, (0)
Face limited application problem * Conditional value at risk (CVaR) or robust
r . 1
CVaRq(X;z2) = IZI'}EIE{Z - mIE{[X —z|*t}}
Consumers naturally have high-dimensional Lack of first-principle understanding of risk-
and non-linear behavior aversion motivations

¥ L

Highlight the need for a more sophisticated utility function formulation
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Background

What do we do
Iél}l? fF(X) HR cost [fs(x,yg, f)]
s.t. hp(x) _0. gF(x) 0l?lsk operator

min fF(x)+Ig1§jt( Ep [fs(x,yé,g)] Expectation

X,)‘g
_+ Riskeerm
a Intentionally

e How does the future uncertainty distribution

affect the risk-neutral decision-making process?

8| Background

Normal distribution — mean, variance

Probability density function
T T T T T

https://en.wikipedia.org/wiki/Normal distribution

Other practical distribution — mean, variance,
skewness, etc. - shape

A A

Y
Y

Negative skew Positive skew
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Background

Contribution
Same expectation

* We establish a theoretical framework to model o A
demand behavior to future volatile electricity prices P
We model demand with a risk-neutral cost-saving
objective in a sequential decision-making context; /

Price
* We found that demand models with quadratic cost

functions are distribution-insensitive;
English: Current demand pattern affected by future

. ) . uncertainty distribution
* We prove that super-quadratic cost functions (higher

order than two) result in prudent demands; / Math-wise: third-order derivative of the utility function
0°G1(pt)

* We use a simulation with a real-world case to verify our results.

9| Background




* Background

e Main Results

e Case Study and Conclusion
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Problem Formulation

Demand model Stochastic dynamic programming reformulation
Discrete time-varying system Working backward and recursively solving a single-stage
Linear system transition optimization for all time t
+ Risk-neutral, cost-saving objective .
& 0b) Qt—l(mt—1|/\t) =min \¢p; + Ct(l‘t) + Gt(pt) + Vt(l‘t)
State cost Pt
T B (3a)
Hgn Ex, Z Aepr + Ch (ilft) + Gy (pt)} + Vi ($T)> Vi(ze) =Ea,,, [Q¢(xt| Aet1)] (3b)
t=1 | —
o t Enlergy cost Action cost End value function: sty =ATy_1 +py. (3¢)
S i for value continuity, Value function: rewards from the future about
= = Lt—1 . 'pt’ setto 0 the current decision, it is a function of time-
@non—antl(:lpatory dependent state value.
A — uncertain price Soft 4 Hard

P — power consumption (battery charging/discharging)
X — state (battery SOC)

*Cost function modeling soft and hard constraints

v
v
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Problem Formulation

Definition - Normalized power and state cost * The system isin equilibrium at zero power and state;

HVAC system (air conditioning) e Deviate from reference (0) increase discomfort (cost);
Temperature * Highlight our focus on disturbances and variations.
A X = 4
29 Discomfort
4 reflected by cost Definition/assumption
: function C(4) Convex and continuous
: dG,/dp,, dC,/dx,
Set point 25 x=0 S I
No discomfort
v X=-5 pixt
20 Discomfort
reflected by cost PeX:

function C(5)

12| Problem Formulation




 Background

* Problem formulation

e (Case Study and Conclusion
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Main Results

Theorem 1 — Distribution-insensitive demand models Same expectation

A

Dermand model: Quadratic action cost Price distribution set L

Qi—1(zi—1|N) = HIlJitH Apr + Ci(zy) + Ge(pe) + Vi(zy)

Set end value

Vi(zy) :]EAt—t—l [Qt ($t|)‘t+1)] functionto O

s.t. x; =Ax;_1 + p;.
—

Price distribution Price

2
anp
Quadratic function: Gy (p;) = % ap > 0,

v

Demand model

Demand model

Theorem - The demand model at time t-1 is Eg\rﬁ | >
distribution-insensitive|to price distribution at time t i ) | Time
Time domain t -
: _ ) Value function with different
Ert+1 [Qt (It |)\t+1)] i EAHl [Qt (It | )\H_l )} : uncertainty distribution
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Main Results

Sketch of the proof: KKT conditions/optimality condition

Demand model State-related costh =c + v
Qi1 (2e—1|Ae) = min Aepe HCo(zo) - Gelpe) +| V(o) Ati1 + Ger1(Pev1) + A1 (Xe41) = 0
Pt
(3a)
Vi(ze) =En, ., [Qe(ze|Ae41)] (3b) @ @
s.t. x; =Axi_1 + p;. (3¢) . ) -
t R Transformation First-order derivative
Capital letter: function
Lowercase letter: function derivative 1 p q; = aQt h
-~ t — ~tt+1
Ct(mt) = 8Ct($t)/8$t Sl o axt £
Lemmal3 Lemmal4 Lemma 12 @
AW Model definition
t+1  Pt+1 t+1 qd: Uy g, GrCe(@) +ay
Future price Action  Statecost Stage cost Value function Pe+1™ Xe41”~ Ce1™ Reva

Price distribution % Demand model @
EA, 1 [96(2e[ Ary1)] = ge(2e[Ba, 1 [Aeta]),

15| Main results




Main Results

Corollary — time extrapolation

Theorem - The demand model at time t-1 is
distribution-insensitive|to price distribution at time t

Demand model

I E i
t-1 t T

Distribution insensitive to all future time

Key takeaway

* Demand with quadratic cost function is independent of
the future price distribution but only the expectation;

* Widely used quadratic models fail to capture real risk-
aware decision behaviors, as they inherently ignore
distributional effects and may thus lead to unintended
demand pattern changes

16| Main results

Price distribution

S

Same expectation

A

Demand change

Pri

»
»

ce

Price uncertainty

Reference level
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Main Results

Corollary — distribution sensitive demand Price distribution 4 Same expectation

Demand model:
Qt—1(Te—1|Ae) ZHEH Atpt + Ci(xe) + Ge(pe) + Vi(xe)
(3a)
Vi(zi) =Ea,,, [Qe (24| Aeg1)] (3b) /
s.t. x; =Ax;_1 + py. (3¢)

— | | N\

Quadratic function: Super quadratic function: >
G (p ) \ Price
a Pt t\ Dt . .
e _ 9plt a0 |:> 0. Price uncertainty
t(pt) 9 P 51% 7£ .
Takeaway — problem Demand change ? ? ?
e o o = b
Practical situations challenges distribution-insensitive conditions: -3 LLLLLLLLL >
* Devices show higher-order cost function performance  Reference level | ., Time
(thermal comfort and hard constraints) : ’
* Practical price distribution — not symmetrical with zero-mean

Motivated super quadratic formulation — prudent demand

17| Main results




Main Results

Theorem 2 — Prudent demand models Probability 4 Same expectation
Price didtribution set L
Supev Setto O

Demand model:

Qi—1(xi—1|A\t) = H;l,itn Aepr + Ci(z) + Ge(pr) + V()

uadratic action cost
Viwe) =B, [Q(mAes )]

s.t. x; =Ax,_1 + p;.

Demand model

- »
. o s T’ Price
Theorem - The demand model before time t satisfies prudent Price distribution
and it% sensitivity condition to price distribution at time t+1 ' ) Uncertainty
Time domain Demand model
EFTH QT(:ET‘)‘T+1” >EAT+1 Q- (mf‘)\7+l)} > er(mr J )\T+1D >0,V <7<t
7
¥> T value function with different uncertalnty)élstrlbutlon Time
Sensitivity 1 t it
v(x) o : Uncertainty
Sensitivity - More skewness i .»°

18| Main results
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Main Results

Sketch of the proof:

Demand model
Qi—1(zi—1|A¢) :n;in Aepr HC:H(xe)H Ge(pe) H Va(ze)

State-related costh = c + v

(3a)
Vi(zi) =En,,, [Qt(zt|Ai41)] (3b)
s.t. ¢, =Ax;_1 + py. (3¢)

[Probability

| ‘ .......... » E Price

:
I ’

Lemma 18 Lemmal1l6 Lemmal7 Lemma 15

T e e el

!/
A1 A Xt+1 Vi  Pi-t

More skewed Future price State  Value function Action

Price distribution <+> Demand model
[ ]

19| Main results

KKT conditions/optimality condition
o Lo ]

t Vt
Pi+ ) colx) +Ealea(xen]|= 0

=1

Function property
Xey1~ D(Ags1)

v

Connect vy~ A;41
Showing v; > 0,thenx; > 0

v

More skewed uncertainty
ov,/om > 0

L

Er, [Qu(@e|Atr1)] > B,y [Q(2e|At1)] > Qe(@t|Ea,,, [Aeya]) > 0.

IA | ENGINEERING
. d Applied Science

School of Engi



Main Results

Corollary — Distribution & sensitivity extrapolation

Proba‘PiIity Expectation

v

T TL" Price

4 Expectation

v

Price
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Corollary — Strict condition

¢ Prudent theorem

Erﬂ-—i-l [QT(ETIAT-FI)] 2 ]EAT+1 [QT(mT‘AT-l-l)] 2 0, VT S t

¢ Demand model

Qi—1(zt—1|At) = Il;l)itn Atpr + Ci(xe) + Gi(pt) + Vi(z)

Vi(ze) =K, [Qe(xt|Ae11)]
A<1

£ ”

T, ~ AT,
I, (mre) > fa, (Tas), Vare > mp s, 47F%, o s} € X,

fft (ﬂT,t) = fft(’)/t%v{ﬂvr,t) ’Yt}

s.t. vy =Az;_1 + p;.

€ Xt?

e Strict condition X,

EFT+1 [Qf(m’r‘A‘T-i-l)] > EA1-+1 [Q'F (377-|Afr+1)] > O=VT0

Jry(mre) — fae(mag) > faolm) — Joy () s Yo mas) € %

(3a)
(3b)
(3¢)

<7<t
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Main Results

Key takeaway

Prudent demand’s value function increases with
the future price distributional factors, with the
same expectation;

This preparatory behavior reflects an inherent
risk-averse response in the demand model; we
suggest that the commonly used risk-averse
formulations are approximations of a more
realistic, higher-order structure.

The demand level change due to prudence scales
proportionally with the skewness of the price
distribution, showing the skewness aversion
behavior

Our results align with the prudence definition from
economics 63Vt
>0

Uncertainty

Demand change

Reference level

)

Sensitivity - The aversion degree
increases with skewness

Reference level

Prudent demand —
Change ahead of time

Skewness aversion

v

axtg Outlier: Symmetrical distribution with the expectation of zero;

21| Main results
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 Background
* Problem formulation

e Main Results
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Case Study

Basic setting Probability 5
2 .
apPt 0 expectation

* Quadratic action cost function:  G¢(p;) =

* Log barrier state cost function: ‘ ‘

[

Ci(zt) = —ac In(Tmax — 1) — ac IN(Tmax + ) + 20 In Tax, | . >
' y = =1 T’ Price
Qe Qe %107

ey () = - 12
Tmax — Tt Tmax + Tt

10+
* Parameter:

a.=05A4=1Vr = 0,ap =1, xpax = 20

An illustration example

State value at 1st stage

* 2-stage, 2-point price distribution with 0 expectation

()

Symmetrical uncertainty
with O expectationand 0 3 ‘ ‘ ‘
initial state ! 15 z 25 8

Xo=0,y==-1,n=17
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Case Study

Continuous prudent demand
* 24stages 00ss|
* The event happens at the 10t stage £ oo
* 6 skewed price distributions with the same £ oozs
expectation and different variance (skewness) 002 — Var=z15%
* Sceiario ) ° ’

State before 10t with all distributions:
skewness aversion

Convergence under 1t price distribution:
Calculation time: 2s.

State under 1% price distribution:
Prudent demand increases before event happen

24| case Study

4

0.9

6 ——Var=2.1596 | '
—— Var = 3.2503
4l 351 08 Var = 4.7074 p
— Var = 6.5308
al 0.7F Var = 8.7206 A
2 Var = 11.2768
2 0.6 B
51
S or 2
2 v T 05
> o ol >
2 i 2
§-20 504
@ 15¢ @
4+ 4 03r
! 0.2
-6 B
0.5 — 01k
-8 Event happen ) 0 . /\ 0 .
0 5 10 15 20 25 20 40 60 80 10i 1 2 3 4 5 6 7 8 9
Time Iteration number Time
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Case Study

Sensitivity of model parameters

e 24 stages * Discount factorsfrom0.1to1-A
* The event happens at the 10t stage » State cost function parameters - \alpha
* 6 skewed price distributions with the same
expectation and different variance (skewness) Precautionary saving behavior persists greater potential loss from

uncertainty at the event time for the same state value, inducing
stronger precautionary saving behavior. But, with a saturation effect.
The cost of precautionary saving begins to outweigh the cost of
expected risk at the event time.

1.2 T

State under 29 price distribution:
Lower discount weaken the prudent influence

0.8 \
—A=01
—a =01
07Fr |—aA=02 f a,
o A=0.3 10 | ——9=04
3506 —A=0.4 g a,=07
= = =
g A=05 S5l —a=t
205 A=0.6 o ¢
o —A=07 5 a =13
_‘g 04 —A=0.8 B 6 a,=16
3 —A=09 ? —a=19
So03- AT & ‘oo
£ o —
s £
= 0.2 2
02 ‘
0.1 ///— /
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Case Study

Real-world case study

* NYISO DA and RT price * Superguadratic model with hard constraints
* Battery doing arbicharge under non-anticipatory * Quadratic model with quadratic penalty
price uncertainty  Superquadratic model exhibits greater variability

20-21 * Quadratic model captures the mean value of RT price uncertainty

250 L - * Superquadratic formulation provides richer and more responsive
DA price decision behavior.
200 | [IRT forecast distribution 100 S
— RT price Superquadratic model
= Quadratic model

=

—150 Z s
s T >
= ' Q

@100 S . T : & 60r
Y S VJ N I A e e
) T I 5
i3] Felal. | i L Ll i \ P

£ sopbylpe At Tl g«
T S L EE O OF Ly gl L\ >
A | =

or L Ll 1 P! I 11 I | | g’ 20l

1 1 | 1 5 0
I =

|
L L L L L L L L 1' L OOFNC"JQ‘LOLOI\CDCDOFNC’J‘I‘LDCOI\CD oM<
—ANOYTNNONOMO-NOYDONOIO-NOST . YrTrTeT e T NN
—TrTrTrrTrrTrTT T —Ql (aVN oV aN] Time

(b) Battery SoC marginal value range under
quadratic and superquadratic formulation

(a) Price distribution from NYTISO

24| case Study
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Interpretation and Conclusion

Conclusion

* We show that risk-aware behaviors in demand response originate from superquadratic
state-dependent cost functions and price uncertainty with skewed distributions;

e We obtain such results through developing a novel theoretical demand response
framework that combines non-anticipatory multi-stage decision-making with
superquadratic cost functions;

* We introduce the concept of prudent demand, which is the first principle for risk-
averse behavior despite a risk-neutral objective.

* Future price uncertainty affects immediate consumption decisions, and the extent of
this response scales proportionally with the skewness of the price distribution
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Interpretation and Conclusion

Practical implication

e Practitioners and policymakers should adopt more sophisticated demand models,
either through higher-order utility function formulations or the adoption of more
accurate risk terms, especially considering physical and behavioral response
limitations, thus, capturing real demand behavior and better accounting for demand
pattern changes to efficiently design time-varying tariffs

* Preparatory savings naturally provide additional backup capacity to the system ahead
of emergencies. Thus, operators should not only focus on the event time itself, but
also schedule additional generation or implement price incentives in advance to
prevent unintended demand peaks.

 Discounting factors and the sensitivity of demand to state value changes are
important for accurately quantifying prudent behavior.

* anticipating and preparing for tail-risk events and controlling the price ceiling exposed
to customers, avoiding the direct exposure of retail consumers to highly volatile
wholesale market prices.
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