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Motivation
Coincident peak (CP) charge - charge the customer based on their

demand at the system peak time, e.g., 4CP program in Texas [1]:

Charge the highest hour in each month between Jun. – Sep., and

count in the next year’s electricity bill.

Research gap - CP time realizes posterior and depends on all cus-

tomers’ strategies [2]→ currentwork focuses on predicting CPtime

and misses the interaction between customers [3, 4] → motivates

a game formulation.

Research question

Whether the game-
based framework 

workable for the CP 
shaving problem?

1
How do gaming 

consumers’
strategic behavior 

causes anarchy 
compared to the 

centralized method

2

Model and formulation
Two-agent two-period CP shaving model

Rationality: peak and off-peak period; two clusters of customers

with an extension to multi-agent.

CP charge at period 1 Agent 1 - game CP charge at period 2 

System peak time determination Shifting penalty

Centralized 

𝑋!, 𝑌! is	the	baseline	demand	at	period	1	

𝑥, 𝑦	is	the	demand	shifting	

𝑆!	is	the	system	demand	at	period	1	

𝛼	is	the	shifting	penalty	parameter	

Q1: NE exist, unique, stable, and reachable
Theorem –Nash equilibrium (NE) (informal)

The CP game could be concave, quasiconcave/discontinuous, and 
non-concave/discontinuous, and under the two-agent two-period 
setting, all types of CP games have unique pure-strategy NE.

Non-concave game
Demand

Agent 1

Agent 2

1 2

Quasiconcave game

Non-concave game: one	 −
critical	point, the	other	 −
system	balance	point	
minus	the	critical	point

Quasiconcave game: both 
agents balance	own	demand

Theorem – stability and convergence (informal)

• The CP game system is global uniform asymptotically stable if 
all customers' baseline demand is positive (Denoting system 
dynamics following the gradient of each agent’s payoff 
function)

• Gradient-based algorithms can converge with an updating rule 
from the finite difference approximation to the system 
dynamics (learning rate chosen from backtracking line search)
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(a) Two-agent concave game.
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(b) Two-agent quasiconcave game.
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(c) Multi-agent non-concave game

Takeaway - Although the game type is variant, the game framework

is workable as the equilibrium exists, unique, stable, and reachable.

Extending to multi-agent two-period settings, everything still holds

except non-concave game NE is not unique, but CP time agent

(whose baseline peak demand is in the system baseline CP time)

and non-CP time agent still balance system demand.

Q2: Peak shaving and economic efficiency
Theorem – peak shaving effectiveness (informal)

In all conditions (two-agent, multi-agent, all types of game), the 
peak shaving effectiveness of the game model is always the same 
as centralized model.

Takeaway - It is helpful for utilities/operators to apply the game

model because they care more about peak shaving.

Theorem – Efficiency loss with agent equity (informal)

In two-agent settings, efficiency loss (P) increases with inequity 
among agents, measured by the marginal shifting cost.

Theorem – Efficiency loss with game type (informal)

In two-agent settings, fixed system conditions  (system demand, CP 
charge price) Agent flexibility reduce – 𝛼, 𝑋!, 𝑋"

Takeaway - (1) CP shaving mechanisms can consider effectiveness

and fairness simultaneously – balance agents’ marginal shifting cost;

(2) Greater agent flexibility reduces system efficiency, reflected by

the CP game type change; (3) Concave CP game equivalent to the

centralized model.

Remark – game type with agent number 

With agent numbers increasing, games are more likely to be non-
concave games.
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Takeaway - (1) Efficiency loss of a small system is more sensitive to

the agents’ flexibility (game type); (2) Efficiency loss is stable in a

large system, who can diminish flexible agent’s influence; (3) Better

to have large systems regarding flexible agents, and small systems

for inflexible agents.
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