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H I G H L I G H T S  

• The multi-party stochastic energy scheduling in IIES is studied. 
• A decentralized decision support system with stochastic utility model is built for IUs. 
• A stochastic game is designed to formulate the interaction among uncertain IUs. 
• A solution algorithm with Markov decision process and iterative method is designed. 
• A comparison between multiple stochastic and deterministic scenarios is provided.  
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A B S T R A C T   

Multi-dimensional stochastic factors challenge the interactive energy scheduling of the industrial integrated 
energy system (IIES). Previous research focuses on either deterministic energy scheduling or individual stochastic 
scheduling while neglecting complicated interactions among uncertain parties, which brings the research gaps 
about stochastic multi-party’s interaction. In this regard, a multi-party stochastic energy scheduling approach in 
IIES is proposed based on the stochastic game. A decentralized decision support system is considered, and a 
stochastic utility model is designed for decentralized IUs with multi-dimensional stochastic factors from 
photovoltaic (PV) production and IIES parameters, enabling them to participate in the multi-energy scheduling 
with their own strategies. A stochastic game model is developed considering the thermoelectric coupling and the 
IUs’ interaction. The co-decision mechanism, recognizing different transfer times of electrical and thermal en
ergy, is built based on the state transition within the game. Moreover, a distributed solution algorithm that 
includes the Markov decision process and iterative method is designed to address the problem of the “curse of 
dimensionality” arising from multiple stochastic factors. Finally, case studies with realistic data from an in
dustrial park in Guangdong Province, China, are designed to show the effectiveness of the proposed approach, 
which enhances IUs’ profits by 9.4% and fits flexible load strategies and price strategies. The decentralized 
system can also reduce the computation time by 70.1% compared to the centralized system. Through analyzing 
different number of scenarios and intervals for PV generation, electrical and thermal load, the conclusion has 
obtained that increase the number of scenarios has a negative effect on IUs’ decision, but increase the number of 
load intervals contributes to more specific results and higher utility.   

1. Introduction 

As an industrial user (IU) is a high energy consumer, like process IU, 
energy optimization is an integral part of its daily operation, aiming at 
maximizing production profits and minimizing energy consumption 
costs [1]. Moreover, an IU usually consumes both thermal and electrical 

energy, resulting in an industrial integrated energy system (IIES) with 
tight thermoelectric coupling [2]. In addition, with the expansion in the 
industrial scale and the increase in the energy consumption, an efficient 
way for mitigating the energy crisis concern is to deploy distributed 
energy resources (DER) within the IUs [3], such as photovoltaic (PV) 
panels, combined heat and power (CHP) units, and combined cold, heat, 
and power (CCHP) units. 
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There are two multi-energy scheduling categories for IUs in IIES: 1) 
studies without uncertainties, and (ii) studies with uncertainties. The 
former category primarily focuses on optimizing multi-party DERs and 
loads with coupled multi-energy aspects, accounting for different 
transfer time of electrical and thermal energy. The uncertain DERs 
generation and other stochastic factors of IIES are supposed as a con
stant. Whereas, uncertainties and fluctuations of DER outputs and other 
key IIES parameters could easily make the deterministic energy sched
uling solution suboptimal or even infeasible. For example, actual PV 
outputs may deviation from the deterministic solution, leading to sig
nificant supply and demand imbalance [4]. Therefore, considering the 
stochastic factors among the multi-energy scheduling in IIES will 
become the main direction in the future. 

Most literature on multi-energy scheduling on IIES, as we will see in 
the next section, mainly considers single stochastic factors in each IU, 
like DER’s uncertainties [5], and system operators (SOs) are generally 
considered, then the system structure is generally built as a centralized 
way, which doesn’t consider IUs iteration with stochastic factors [6]. 
However, it is stressed that there are multi-dimensional stochastic fac
tors for an IU from PV generation and other key IIES parameters. Be
sides, the multi-energy scheduling for the IUs in the IIES is a multi-party 
profit-competed problem, which requires the iterations among individ
ual IU [7]. These two factors further complicate the multi-energy 
scheduling in IIES which presents difficulties for the centralized sys
tem structure to formulate the multi-dimensional stochastic factors in 
the multi-energy scheduling with multi-party’s interactions [8]. To 

conclude, there are two challenges: (i) How to formulate IU’s partici
pation in the energy scheduling while considering thermoelectric 
coupling as well as multi-dimensional stochastic factors for each IU in 
the industrial production process and IU’s characteristic; and (ii) How to 
design a profit-related multi-energy scheduling plan for the multi-party 
operation while considering the effect of stochastic factors and different 
transfer time of electrical and thermal energy in the IIES. 

To address the aforementioned difficulties and supplement the 
research gap, a decentralized decision support system is proposed for IUs 
to participate in the multi-party energy scheduling. Based on the 
decentralized decision support system, the multi-dimensional stochastic 
factors of each IU can be considered in the energy scheduling process, 
and IUs can get their energy scheduling strategies individually based on 
their own characteristics. Besides, due to the superior performance of 
the game theory in dealing with multi-party profit-related interactions, 
the non-cooperative type game is adopted to schedule the profit- 
competed IUs’ strategy. We start from the multi-dimensional stochas
tic factors, consider thermoelectric coupling and thermal delay, as well 
as many possible thermal and electrical load demands of interactive IUs 
under an uncertain environment. The widely used static game theory, 
such as Nash game, Stackelberg game, is not suitable to be used. 
Therefore, the formulation is based on a richer class of games, namely 
stochastic games [9], to capture the stochastic multi-energy interaction. 
This is a new energy scheduling approach and has not been reported, as 
far as we know. The contributions of the paper are as follows: 

Nomenclature 

Abbreviations 
IU Industrial user. 
IIES Industrial integrated energy system. 
CHP Combined heat and power. 
DER Distributed energy resources. 
PV Photovoltaic. 
MDP Markov decision process. 
SO System operator. 
CVaR Conditional value at risk. 
STN State-task network. 
ECU Electrical comprehensive uncertainties. 
TCU Thermal comprehensive uncertainties. 
TLF Thermal load following. 
ELF Electrical load following. 
NE Nash Equilibrium. 

Parameters and variables 
ξ Coupling ratio of thermal and electrical energy in 

industrial users (IUs). 
γ Thermal-to-electrical energy ratio in combined heat and 

power (CHP). 
β Ratio of electricity consumption to the thermal energy 

production for CHP units. 
Tdelay Delay of thermal energy compared with electrical energy 

(h). 
εt Heat loss coefficient. 
h, H Index and total number of time slot. 
i, N Index and total number of IUs. 
v, V Index and total number of PV generations. 
j, J Index and total number of load intervals. 
X, Y Number of electrical and thermal load demands. 
k, K Index and total number of load demands, K = X∙Y. 
Ns, Nb Total number of sellers and buyers. 
Re,i,h,x, Rt,i,h,y Probability that the electrical and thermal load 

generation falls in this level. 
R e,i,h, R t,i,h Set of electrical and thermal probability. 
Ei,h,v PV generation (kWh). 
RPV,i,h,v The probability that the PV generation level falls in this 

interval. 
Li,h,j,x Electrical load level, which belongs to the set L i,h,j (kWh). 
fLi,h,sLi,h Fix electrical load and flexible electrical load (kWh). 
HLi,h,j,y Thermal load level, which belong to the set H L i,h,j (kWh). 
fHLi,h,sHLi,h Fix thermal load and flexible thermal load (kWh). 
θi,h,j Set of IU’s load demands in the interval j (kWh). 
φi,h Set of IU’s load strategies (kWh). 
DLi,h,j,v,k Net electrical load (kWh). 
TLh,j,y Thermal production of CHP units (kWh). 
ELh,j,y Electricity generation of the CHP units (kWh). 
prb,h,j,v,k Dynamic electricity purchasing price (CNY/kWh). 
prs,h,j,v,k Dynamic electricity selling price (CNY/kWh). 
pb,h,j, ps,h,j Set of dynamic electricity purchasing and selling prices 

(CNY/kWh). 
prt,h,j,y,pt,h,j Dynamic thermal price, and the set for the prices (CNY/ 

kWh). 
ae, be Parameters of electrical cost function (CNY/kWh and 

CNY). 
at,h,1, at,h,3 Parameters of thermal prices function (CNY/kWh and 

CNY). 

Function 
Fi,h,j

(
θi,h,j,Ei,h,v

)
IU’s total utility that includes electrical and thermal 

uncertainties, as well as PV uncertainties. 
fi,h,j,v(θi,h,j,k,Ei,h,v) Expected utility under a PV generation scenario v. 
gi,h,j,v,k

(
θi,h,j,k,Ei,h,v

)
Instantaneous utility for each possible load 

demand k under a PV generation scenario v. 
C
(
Li,h,j,x

)
Electricity cost function. 

CSO,h,j,y
(
TLh,j,y, ELh,j,y

)
Operation cost of CHP unit.  
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(1). A decentralized decision support system is proposed for IUs with 
multi-dimensional stochastic factors and interactive character
istic. In the system, a stochastic utility model is built for each IU, 
which enables them to participate in the multi-energy scheduling 
with their own strategies. The multi-dimensional stochastic fac
tors from DERs and IUs’ industrial production process are dis
tributedly considered, as well as many possible load demand 
according to the PV uncertainties. The thermal delay and ther
moelectric coupling are also incorporated in the decentralized 
system.  

(2). A stochastic game model is proposed for multi-energy scheduling 
among multiple profit-driven parties, where the interactions of 
IUs with multi-dimensional stochastic factors is formulated via 
dynamic processes. A co-decision mechanism based on state 
transitions within the game is provided to address different 
transfer time of electrical and thermal energy, and a distributed 
solution algorithm with the Markov decision process (MDP) and 
iterative method is designed to address the problem of “curse of 
dimensionality” arisen from the stochastic factors. 

The remainder of the paper is organized as follows: We discuss the 
relate literature on multi-energy scheduling in IIES in Section 2 followed 
by a description of the considered system framework and basic char
acteristic in Section 3. The IUs and system operator (SO)’s model is 
formulated in Section 4. The iteration of stochastic IUs is formulated as a 
stochastic game in Section 5, where we also analyze the properties of the 
game and designed a distributed solution algorithm. Case study are 
discussed in Section 6, and some concluding remarks are contained in 
Section 7. 

2. Literature review 

Recently, there has been considerable research effort to understand 
the multi-energy scheduling in IIES. This is mainly because the energy 
scheduling for IIES is a challenging task, in observing complications of 
thermoelectric coupling, different transfer time of electrical and thermal 
energy [7], as well as fluctuation and intermittence of DERs and other 
key IIES parameters [10]. 

The literature can be divided into two general categories: (i) studies 
without considering uncertainties, and (ii) studies considering stochastic 
factors. In the first category, the multi-energy scheduling for IUs usually 
accompanies with many interactions relationship to get the optimal 
solution [11]. As the superior performance in dealing with multi-party 
profit-related interactions, game theory is widely used to study the 
optimal schedule. The interactions between IUs and upper operators are 
usually existed, and the Stackelberg game is one of major frameworks to 
model the interactions, such as between IUs and CHPs unit owner [12] 
and between IIES operator and urban manager [13], which realizes the 
distributed autonomy and centralized coordination of IIES. The phe
nomenon of thermoelectric coupling and thermal delay, which is caused 
by the different transfer time of electrical and thermal energy, is 
considered in the game formulation [7]. The interaction among IUs is 
also existed. Nash game provides a feasible way to formulate their 
interaction [14]. To maintain a certain level of users’ anonymity, a two- 
stage game model and a generalized Nash game model with thermal 
comfort are built for suppliers and IUs [14,15]. Energy management for 
IUs in IES can also be studied by a cooperative perspective, building 
cooperative game model for energy hub to coordinate IU community 
[16]. The cooperative game also introduces to formulate the cooperative 
alliance, then processing the energy trading among them under the 
consideration of virtual energy storage [17]. 

In addition to the IUs, another important entity in IIES is CHP (and 
CCHP), which generally affords the thermal energy demand and meets 
partial electrical energy demand [7]. The research for CHP system is 
mainly focus on the optimal output and industrial use of CHP/CCHP 
units, some of them considering the thermal energy storage system to co- 

optimized their scheduling strategies [18], some of others incorporate 
the DER supply and regional hydropower plants to evaluate the influ
ence of local DER on the production planning of CHP system [19]. The 
economic profitability is also an important issue that can be improved 
through the scheduling of CHP units, where the mathematical model is 
generally built as mix integer linear programming [20]. 

For the second category, as we discussed in the Introduction, the 
uncertainties from DERs and other key IIES parameters are crucial for 
the multi-energy scheduling and become the main direction in the 
future. Most literature have focused on the uncertainties problem and 
multiply methods have been adopted such as: scenario based stochastic 
modeling method, robust optimization, fuzzy theories, and conditional 
value at risk (CVaR). These methods generally solve the problems in a 
centralized manner. The scenario based stochastic optimization is 
implemented by the centralized aggregators, which builds the cost 
minimization model based on the multiple scenarios generated through 
from electricity price and solar PV uncertainties [21]. The multi-stage 
scenario tree generation method is proposed to minimize the compre
hensive cost based on the conditional generative adversarial network- 
random forest-Markov chain [22]. Stochastic optimal operation model 
is formulated based on scenario generation and reduction for the heat, 
gas, and electric delivery system, which helps the centralized operators 
to schedule the system with minor cost [5]. A two-stage stochastic 
optimization approach is proposed to maximize the expected revenue of 
the community microgrid companies as well as enhance the reliability of 
the system [23]. Robust optimization has the characteristics of simple 
modeling and strong anti-interference, which consider the optimal so
lution of the worst scenarios in all the uncertain scenarios [6]. A two- 
stage robustly coordinated operation method is proposed to achieve 
the optimal profits for the multi-energy microgrid operator, and the load 
uncertainties are modeled as uncertainty sets for the operator [24]. The 
reserve is also co-optimized with multi-energy through an adaptive 
robust model to minimize the total system cost in a centralized way 
under the worst-case realization [25]. The industrial use of centralized 
CHP system is usually scheduled together with the renewable energy, 
storage system, and electric vehicles, and the robust optimization is 
adopted to deal with the future pricing uncertainties [26]. To face the 
supply and demand side uncertainties in IIES with CHP and renewable 
power, manufacturing and non-manufacturing loads in industrial pro
duction is scheduled based on the robust optimization and CVaR [27]. 
Robust optimization also provides a solution to conquer the challenges 
of increased operating cost and energy supply deficiency caused by 
DERs’ uncertainties through forming a multi-timescale coordinated 
adaptive approach [28]. Also, the similar robust coordinated optimiza
tion method is designed to explore the quantitative impact of thermal 
inertia under the thermal inertia uncertainties [29]. Besides, the CVaR 
can also be incorporated in the fuzzy model, to resolve the sudden 
absence of distributed energy resources and power failures [30]. The 
CVaR can also be used to consider the PV uncertainties, then reflecting 
the CVaR value in the game formulation, which enables a static game 
process without considering the uncertainties [16]. Other uncertainties 
solving methods are also used in IIES multi-energy scheduling, like a 
powerful probabilistic tool named 2 m + 1 point estimate strategy is 
presents for energy flow analysis of an IIES. 

Aforementioned literature mostly focuses on the centralized system 
structures, where the centralized operators, such as aggregators [21], 
industrial multi-energy microgrids operators [28], and hub managers 
[16], are responsible for the energy scheduling through the column-and- 
constraint generation algorithm [28], Matlab-ANSYS co-simulations 
method [29], and game theory [16,30]. With the increasing number of 
users, centralized system structure faces the problem of processing 
massive users’ data, which facilitates the appearance of decentralized 
system structure. In the decentralized system structure, IUs with various 
scheduling and preference can be individually considered, and the un
certainties from IU’s characteristic can be deal with by setting the fuzzy 
rules [31], or be tackled by the CHP with fuzzy load duration curves 
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[32]. However, current decentralized system structure can only consider 
the stochastic factors of each IU [21,24,30,31], rather than their in
teractions. Although some research considers entities’ interactions 
under a decentralized manner, their interactions are modeled as a two- 
stage static game framework as the uncertainties are deal with in the 
former stages [16]. 

Based on the aforementioned points, it is obvious that there still exist 
research gaps to build a decentralized system structure that can consider 
multi-dimensional stochastic factors during the IUs’ interactions. In this 
regard, unlike the discussed literature, this paper investigates the 
decentralized decision support system with a stochastic game model, 
where the dynamic multi-party’s interactions with stochastic factors can 
be captured. The stochastic game theory is first proposed by L. Shapley 
in 1953 [9], which includes five elements: game player, state, action, 
state transition probability, and utility. Different from the static games, 
such as the Nash game, with only one kind of stage and one state, the 
stochastic game is a kind of dynamic game with multi-stage, and 
different stages have different states. As the game dynamically imple
ments in different stages, the work here dynamically models the multi- 
dimensional stochastic factors, which will change the states in different 
stages with the state transition probability. Besides, we also consider the 
thermoelectric coupling and thermal delay, as well as many possible 
thermal and electrical load demands of interactive IUs under the inter
active uncertain environment. 

3. System framework and basic characteristics 

3.1. Structure for the decentralized decision support system 

A detailed structure of the decentralized decision support system is 
shown in Fig. 1, which includes IUs and SO. Most IUs have both elec
trical and thermal demands, as well as PV panels to cover part of the 
electrical energy needs. A CHP unit, which is controlled by the SO to 
provide both electrical and thermal energy, consists of microturbines, 
heating and waste-heat recovery systems, and auxiliary boilers. In terms 
of electrical energy, an IU can purchase electrical energy from other IUs. 
While if PV production of an IU is greater than its electrical demand, it 
can sell excessive electricity to other IUs for profit; the SO maintains 
electrical energy balance. On the other hand, IUs’ thermal energy de
mand is satisfied by CHP units. The SO also determines the selling and 
purchasing prices of electrical energy as well as purchasing prices of 
thermal energy. 

IUs conduct the multi-energy scheduling independently through the 

user energy management system (UEMS), where the electrical/thermal 
demand are optimized according to the price signal transmitted by the 
SO. Under the decentralized decision support system structure, IUs can 
participate in the stochastic energy scheduling based on their own 
strategies. Besides, the system can provide decentralized computing 
resources, like UEMS, to reduce the computation burden in the 
centralized operators. With these advantages, the IUs’ multi- 
dimensional stochastic factors can be considered into the IUs’ in
teractions. The reason is that it can overcome the difficulties that there 
are massive data from stochastic scenarios required to be transmitted, 
and the scenarios will be exponential increased if solving in a centralized 
method. 

3.2. Process industry with thermal delay and thermoelectric coupling 

A process industrial contains multiple operation with the charac
teristic of continuity of each operation. Typical process industrial have a 
stable-state process that can be employed in iron and steel plants, 
chemical plants, and pharmaceutical factories [33]. The production 
process of a process industry can be expressed in a state-task network 
(STN) form. A STN is composed of multiple operations, like the evapo
ration and concentration, oxidation distillation, and condensation in 
chemical plants, each of which has multiple material use, products, as 
well as thermal and electrical equipment. An STN representation of a 
detailed process industry is shown in Fig. 2. 

Specifically, Fig. 2 shows two critical factors of a process industry:  

(1). Thermoelectric Coupling: Operations of electrical and thermal 
equipment are tightly connected with each other. Indeed, the 
normal operation of thermal equipment is generally accompanied 
by an electrical energy consumption, resulting in the thermo
electric coupling in IUs (denoted as ξ). For example, a distillation 
tower in a chemical plant requires a control panel that runs on 
electrical energy. The thermoelectric coupling also exists in the 
SO. A CHP unit produces thermal energy to satisfy thermal de
mands of IUs, while electrical energy is a byproduct based on the 
thermal-to-electrical energy ratio γ of the CHP.  

(2). Thermal Delay: The electricity and thermal networks support the 
electrical and thermal demands of IUs in the IIES. Electrical de
mands are satisfied in real time (i.e., h1 = h2) by the electricity 
network, as electricity production, transmission, and consump
tion are carried out almost simultaneously. In comparison, the 
thermal energy is always supplied with a time delay (i.e., h1 =

Fig. 1. Structure of the decentralized decision support system in IIES.  
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h2 − Tdelay). The transmission time delay depends on physical 
characteristics and operating conditions of heating pipes in the 
thermal network that connect heat sources and thermal loads, e. 
g., energy loss, pipe size, frictional resistance, and temperature 
[7]. 

The difference in the transfer time of thermal and electrical energy 
complicates the energy scheduling in IIES. Specifically, electricity de
mand and generation are balanced instantaneously, while a thermal 
demand to be satisfied by the CHP units in one time slot shall be pre
pared Tdelay slots ahead of time, i.e., have the coupling effect in time 
horizon. Therefore, because thermal states of the current time slot and 
Tdelay hours ahead are coupled and IUs also present tight thermoelectric 
coupling, the electrical states of the current time slot and Tdelay hours 
ahead are also coupled. 

3.3. Multi-party interactions with multi-dimensional stochastic factors 

The multi-party interaction is shown in Fig. 3. With the built 
decentralized decision support system, IU will transmit their thermal 
and electric load strategies that obtained from their own decision pro
cess to other IUs and the SO, then other IU can decide their strategies and 
SO will calculate the prices signals. Specifically, because energy prices 
depend on load consumption levels of all IUs and affect each IU’s load 
strategies, the IU’s load strategies have interactive influence during the 
decision-making process, as well as the stochastic factors. 

Fig. 3 also shows the influence of multi-dimensional stochastic fac
tors on the decision-making process. The uncertain PV generation in the 
source side is caused by the fluctuation and variation of solar irradiation. 
Therefore, all IUs suffer the same PV uncertainties. This uncertainty is 
processed by the scenario generation, each scenario includes PV gen
eration and corresponding occurrence probability. All the scenarios can 
be described by a probability measure, which can be expressed as 
follows: 

Fig. 2. STN of process IUs composed of thermal delay, thermoelectric coupling, and stochastic factors.  

Information
Interaction

IU N PV
Panel

Load

SO CHP

Load
Price

Equipment fault
Light intensity

Temperature
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Thermal
loadTCU
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Heat transfer 
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Material supply
ECU

Thermoel
ectric 
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Electricity
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DER
Spectral 
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Multi-dimensional stochastic factors
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TCU,ECU,DER

IU 4 PV
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IU 3 PV
Panel
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IU 2 PV

Panel

Load

IU 1 PV
Panel

Load
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Fig. 3. Multi-dimensional stochastic factors of IUs in IIES.  
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ηPV,h ∼ ℝ
(
Ei,h,R PV,i,h

)
,R PV,i,h :=

{
RPV,i,h,v, v ∈ V

}
, (1)  

where R(∙) is the probability measure, which can be derived by 
leveraging statistical information from historical PV generation data, the 
method to get R(∙) is based on polynomial interpolation or fitting. 

The industrial production of process IUs also introduces un
certainties, which can be classified into three categories [34]: (i) 
inherent uncertainty of the production process, such as thermodynamic 
constant, pipe condition, flow rate, etc.; (ii) external uncertainty of the 
production system, resulting from the material supply, product re
quirements, and prices of raw material; (iii) random uncertainty, such as 
equipment failure and manual operation errors. If the equipment is out 
of service, the material may stay unused, and the profit may not be ac
quired. Thus, all the factors are related to the production process and the 
normal equipment operation, and have influence on the production cost, 
product, and energy consumption. To this end, two types of compre
hensive uncertainties related to the industrial production are consid
ered, including the electrical comprehensive uncertainties (ECU) 
associated with electrical equipment and the thermal comprehensive 
uncertainties (TCU) associated with thermal equipment. 

The ECU and TCU are processed by the interval partition and 
consider the thermal and electrical load as a discrete type. Because of the 
uncertainties, each load interval contains multiple possible thermal and 
electrical load demands and corresponding probabilities. These un
certainties transfer thermal and electrical load to random variables that 
also follow certain probability measures, obtained from historical 
production-related data by polynomial interpolation or fitting method. 
These random variables can be expressed as follows: 

ηe,i,h ∼ ℤ
(
Li,h,R e,i,h

)
,R e,i,h :=

{
Re,i,h,x, x ∈ X

}
(2)  

ηt,i,h ∼ ℂ
(
HLi,h,R t,i,h

)
,R t,i,h :=

{
Rt,i,h,y, y ∈ Y

}
, (3)  

where Z(∙) and C(∙) are the probability measures calculated with the 
statistical data of electrical and thermal equipment, respectively. 

Both the ECU and TCU would impact the energy scheduling decision- 
making process due to the thermoelectric coupling. Specifically, the TCU 
is reflected in the IU’s thermal load; The electrical load, which is coupled 
with the thermal load L = ξ∙HL, is affected by both TCU and ECU. 
Therefore, both ECU and TCU are embodied in the load profile, and 

eventually affect the energy scheduling. Additionally, uncertain PV 
outputs impact the IUs’ net load and affect the load scheduling in 
combination with ECU and TCU, showing the influence of the interacted 
multi-dimensional stochastic factors on the decision-making process. 

4. System model 

4.1. Stochastic utility model for decentralized IUs 

Each of electrical and thermal loads consists of a fixed component 
and a flexible component. Fixed loads require highly reliable supply, 
with fixed energy consumption time and quantity. On the other hand, 
the time and quantity of a flexible load can be adjusted during the 
decision-making process. The IUs’ production is determined by the 
electrical and thermal loads, and IUs can be electrical energy sellers or 
buyers depending on the available PV production. Therefore, the IUs’ 
profit is determined by the electrical load, thermal load, and PV pro
duction, with the given purchasing price prb,h, selling price prs,h, and 

thermal price prt,h. Each IU implement their multi-energy scheduling 
individually according to their own utility model, where the load stra
tegies (including thermal and electrical load strategies) are considered 
as discrete variables (corresponding to multiple intervals j), and multi
ple possible thermal and electrical load demands (denoted as k, k ∈ K) 
are included in each interval. The thermal and electrical load demands 
are assumed to belong to independent set L i,h,j and H L i,h,j, and the set 
of IU’s load demands in the interval j are defined as: 

θi,h,j :=
{

θi,h,j,k|
(
Li,h,j,x,HLi,h,j,y

)
∈ L i,h,j × H L i,h,j

}
(4)  

where × is the Cartesian product, and K number of elements are 
included in the set, i.e., K = X∙Y. 

Then the set of IU’s load strategies (interval) can be expressed as: 

φi,h :=
{

θi,h,j, j ∈ J
}

(5) 

The stochastic utility model for decentralized IUs is expressed as 
follows: 

Fi,h,j
(
θi,h,j,Ei,h,v

)
=
∑

v∈V
pPV,i,h∙fi,h,j,v (6)  

fi,h,j,v
(
θi,h,j,k,Ei,h,v

)
=
∑

k∈K
πi,h,k∙gi,h,j,v,k, (7)  

πi,h,k =
{

Re,i,h,x∙Rt,i,h,y|R e,i,h × R t,i,h
}
, (8) 

The reflection of stochastic factors on the stochastic utility model is 
explained in Fig. 4. There are two expectation forms to reflect the sto
chastic factors. The first is the IU’s total utility Fi,h,j that reflects the PV 
uncertainties, and the second is the expected utility fi,h,j,v under a PV 
generation scenario v that reflect the ECU and TCU. The total utility in a 
load interval j includes the expected utility fi,h,j,v in all PV generation 
scenarios with occurrence probabilities, as (6) shows. gi,h,j,v,k is the 
instantaneous utility of a possible load demand k in a load interval j and 
PV generation scenario v. The expected utility is calculated as (7) shows 
with all the instantaneous utility gi,h,j,v,k and corresponding probability in 
a load interval j. 

The instantaneous utility is a deterministic utility, and the model for 
seller (i.e., DLi,h,j,v,k > 0) and buyer (i.e., DLi,h,j,v,k ≤ 0) are expressed as 
follows:   

PRi,h,j,k = kni,hln
(
1+ Li,h,j,k

)
+ kmi,hln

(
1+HLi,h,j,k

)
, (10)  

Li,h,j,x = fLi,h,j,x + sLi,h,j,x, (11)  

HLi,h,j,y = fHLi,h,j,y + sHLi,h,j,y, (12)  

DLi,h,j,v,k = Li,h,j,x + ξHLi,h,j,y − Ei,h,v, (13)  

where kni,h and kmi,h are respectively the constant preference parameters 
of electricity and thermal energy of IU i at time h; ln(∙) is the natural 
logarithm function, which is widely used in economics to model user 
preferences in the decision-making process [35]; DLi,h,j,v,k depends on the 
electrical load Li,h,j,x, thermal loadHLi,h,j,y, PV production Ei,h,v. 

The IUs’ utilities consist of three components: production utility, 
electricity trading utility, and thermal energy cost. The production 
utility is first terms in (9) PRi,h,j,k, which reflects the electricity 

gi,h,j,v,k
(
θi,h,j,k,Ei,h,v

)
=

{
PRi,h,j,k − prb,h,j,v,k⋅DLi,h,j,v,k − prt,h,j,v,k⋅HLi,h,j,y,DLi,h,j,v,k ≤ 0
PRi,h,j,k − prs,h,j,v,k⋅DLi,h,j,v,k − prt,h,j,v,k⋅HLi,h,j,y,DLi,h,j,v,k > 0 , (9)   
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consumption. Based on whether IU is a buyer or a seller, the utility for 
trading electricity with other IUs is either prb,h,j,v,k⋅DLi,h,j,v,k or 
prs,h,j,v,k⋅DLi,h,j,v,k. The role is determined by DLi,h,j,v,k, i.e., the buyer pays 

the purchasing cost if DLi,h,j,v,k > 0, and the seller receives a profit if 
DLi,h,j,v,k ≤ 0. The utility of trading thermal energy is prt,h,j,v,k⋅HLi,h,j,y. The 
cost is due to the IUs’ inability to generate thermal energy and the ne
cessity to purchase it from the SO. 

Adjustment capabilities of the flexible electrical and thermal loads 
are limited by their lower and upper bounds: 

sLi,h,min ≤ sLi,h ≤ sLi,h,max, (14)  

sHLi,h,min ≤ sHLi,h ≤ sHLi,h,max, (15)  

where sLi,h,min and sLi,h,max are respectively the lower and upper bounds 
of the flexible electrical load of IU i at time h; sHLi,h,min and sHLi,h,max are 
those for the flexible thermal load. 

4.2. Prices model of the SO 

The dynamic purchasing price prb,h, selling price prs,h, and thermal 
price prt,h are set by the SO to help the IUs’ energy scheduling. The 
dynamic electrical prices (including purchasing and selling prices) are 
calculated based on the electrical cost function, which considers the 
effect of IU’s load consumption and the profit of SO. According to [36], a 
quadratic polynomial model is used to represent the electrical cost 
function: 

C
(
Li,h,j,x

)
= ae⋅

(
∑

i∈N
Li,h,j,x

)2

+ be⋅
∑

i∈N
Li,h,j,x (16) 

The parameters ae and be are determined by the SO based on some 
related influencing factors of the electricity cost, such as generator 
types, fuel prices, SO’s profit margins. Based on the electrical cost 
function, the electrical prices model can be obtained: 

prb,h,j,v,k = ae

∑

i∈N
DLi,h,j,v,k + be,DLi,h,j,v,k > 0, prb,h,j,v,k ∈ pb,h,j (17)  

prs,h,j,v,k = − ae

∑

i∈N
DLi,h,j,v,k − be,DLi,h,j,v,k ≤ 0, prb,h,j,v,k ∈ ps,h,j (18) 

In terms of thermal energy, the CHP units generates thermal and 
electrical energy simultaneously. In the thermal load following (TLF) 
mode, the CHP is mainly used to generate thermal energy, with elec
trical energy as a byproduct. In the electric load following (ELF) mode, it 
is mainly used to generate electrical energy. This study focuses the CHP 
in the TLF mode. The thermal energy generated by the CHPs is based on 
the thermal demand of the IUs. 

TLh,j,y =
∑

i∈N
εt⋅HLi,h− Tdelay ,j,y, (19)  

ELh,j,y = γ⋅TLh,j,y, (20)  

γ =
(1 − λ − λloss)

λ
⋅σheat, (21)  

where HLi,h− Tdelay.j,y is thermal load of IU i at time (h − Tdelay), and time 
delay Tdelay depends on physical characteristics of the thermal network; 
λ, λloss, and σheat are power generation efficiency, heating loss coefficient, 
and heating coefficient of CHP, respectively. 

The operation cost of CHP units for SO is formulated as a quadratic 

function of heat production and electricity generation based on [37,38].  

where CSO,h,j,y
(
TLh,j,y,ELh,j,y

)
is the operation cost of CHP units.at,h,1, 

at,h,2, at,h,3, at,h,4, and at,h,5 are the parameters, and decided by the 
characteristic of CHP units, price of natural gas, and low heating value of 
natural gas. 

Because the CHP units operates in the TLF mode, the operation cost is 
based on the thermal production. 

CSO,h,j,y
(
TLh,j,y

)
= at,h,1∙TL2

h,j,y + at,h,3∙TLh,j,y (23) 

According to the operation cost model of CHP units, the thermal 
price model can be obtained by taking the derivative of the cost 
function. 

prt,h,j,y = at,h,1∙TLh,j,y + at,h,3, prt,h,j,y ∈ p t,h,j (24)  

5. Stochastic game model and solution algorithm 

5.1. Stochastic game model among IUs 

The IUs participation in IIES is to maximize their utility. It is similar 
to a multiagent profit-related problem and studied via game theory [11]. 
The interaction between the IUs can be formulated as a non-cooperative 
game, in which SO is the middleman to provide the dynamic prices prb,h,

prs,h, prt,h, and the IUs are the game players with the strategies of load 
distribution Li,h, sHLi,h. The interaction relationships are expressed as 
Fig. 3. 

However, the multi-dimensional stochastic factors would impact 
their load strategies due to interactions and the tight coupling of thermal 
and electrical energy, then the states (i.e., includes dynamic purchasing 
prices, selling prices, and thermal prices) are affected. The state in each 
stage (i.e., time slot) will also be different and updated from previous 
stages because the prices are dynamically updated with the load stra
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Fig. 4. Reflection of stochastic factors on the stochastic utility model.  

CSO,h,j,y
(
TLh,j,y,ELh,j,y

)
= at,h,1∙TL2

h,j,y + at,h,2∙EL2
h,j,y + at,h,3∙TLh,j,y + at,h,4∙ELh,j,y + at,h,5∙TLh,j,y∙ELh,j,y (22)   
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tegies under the influence of multi-dimensional stochastic factors. Be
sides, the thermal delay couples the state of a certain time slot and Tdelay 

time slots after it, resulting in the states in current time slot affected by 
the previous time slots. An independent review of each IU’s stochastic 
factors cannot accurately reflect their interactions and cannot dynami
cally update states during the decision-making process. Therefore, a 
dynamic gaming process with the states transition is formulated as 
stochastic game model: 

Ψ = 〈N, Sh,Ah, ρh
(
Ai,h,j|Si,h− 1,j

)
,Fi〉, (25)  

Si,h,j =
{
pb,h,j, ps,h,j, p t,h,j

}
, Si,h,j ∈ Sh, (26)  

Ai,h,j =
{

θi,h,j
}
,Ai,h,j ∈ Ah, (27)  

ρi,h,j = p
{

Si,h− 1,j,Ai,h,j
}
, ρi,h,j ∈ ρh (28)  

max
ρi,h,j

Fi
(
ρi,h,j

)
=
∑H

h=1

∑J

j=1
ρi,h,j∙Fi,h,j (29)  

s.t.
∑J

j=1
ρi,h,j = 1, ∀h ∈ H, ∀i ∈ N (30)  

where subscript h is the index of stages in the game. Note that in this 
paper the state index is consistent with the time index. p{∙} is the 
probability measure over the state and load strategy.  

(1). N is the set of IUs that represent the game players.  
(2). Sh is the states’ set of the game, which updates with the game 

stages and each state describes the dynamic purchasing prices, 
selling prices, and thermal prices at certain time slot.  

(3). Ah is the set of strategies of the game, and each strategy includes 
flexible electrical and thermal loads of IUs. The state changes as 
the game stage process and the strategy are applied, and Si,h,j is 
determined by strategy Ai,h,j and the previous state Si,h− 1,j. The 
strategy set includes J number of possible strategies, and each 
strategy is associated with a probability. Besides, there are K 
number of possible load demands in a load interval under the 
ECU and TCU.  

(4). ρh
(
Ai,h,j|Si,h− 1,j

)
is the state transition probability, which is a 

conditional probability according to the definition of the sto
chastic game and determined by the load strategies and previous 
state [9]. A map is existed in the state transition probability and 

load strategy, in which the state transition probability implicates 
the probability of a chosen strategy. Therefore, choose the 
optimal load strategies equivalent to determine the state transi
tion probability of each load strategy.  

(5). Fi is the IUs’ utility when participating in the game, which is 
determined by the IU’s stochastic utility model (6–13). The utility 
is the sum of all the time slots for the day-ahead energy sched
uling with different transfer time. During the game process, each 
IU maximizes their utility by optimizing the state transition 
probabilities under different load strategies. 

Fig. 5 shows the game process that includes the coupled thermal and 
electrical energy in each stage. There are interactions between each IU, 
and SO serves as a middleman to provide the dynamic electrical and 
thermal prices during IUs’ interaction. The state transition occurs as the 
game develops, and they are supported by the probability distribution of 
the state transition probability and the strategies of IUs. IUs develop 
their strategies in each stage by maximizing their own profits Fi. Affected 
by the dynamic prices, the optimal load strategies will be determined 
under the consideration of multi-dimensional stochastic factors. 

Thermal delay has significant impact on the stochastic game process, 
as thermal energy of the IU’s previous stage will affect the thermal prices 
of SO in the following stages. The reason is that as the physical char
acteristics of the thermal network induce certain thermal delays, ther
mal generation and transmission have to be prepared Tdelay hours in 
advance to meet thermal demand of the current hour, which conse
quently influences thermal prices over Tdelay hours. Because the natural 
gas for thermal energy generation is used in the generation time slot, so 
that the previous thermal energy affects the parameter at,h,1 of the prices 
function (24), then reflecting in the current thermal prices. The 
parameter is calculated by: 

at,h,1 = at,h,1,0
TLi,h− 1,y

TLi,h,y
(31)  

where parameters with subscript “0′′ is the initial value in each time slot. 
In comparison, the electrical energy is generated and priced within 

the same time slot because of the instantaneous electricity generation 
and consumption without significant delays. Besides, the multi- 
dimensional stochastic factors and state change probability have influ
ence on the IU’s load strategies at each stage, then the states (i.e., dy
namic prices) will also be affected. Therefore, under the influence of 
thermal delay and stochastic factors, the game stage will continuously 
change and the states in each stage will be affected by previous states 

Fig. 5. Stochastic game process.  
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and dynamically updated during the game process. 

5.2. Nash equilibrium (NE) of stochastic game model 

The equilibrium of the stochastic game is referred to as NE, which is 
defined as follows: 

Definition:. A set of optimal strategies A*
i,j =

{
θ*

i,h,j|h = 1,2,⋯H
}

of 
player i is the NE, if and only if the strategy of player i is the optimal strategy 
of the combination of other players’ strategy, which satisfy the following 
expression: 

Fi

(
A*

1,j,⋯,A*
i,j,⋯A*

N,j

)
≥ Fi

(
A*

1,j,⋯,A*
i− 1,j,A*

i,j,A
*
i+1,j,⋯A*

N,j

)
,∀i ∈ N, (32) 

The solving process will follow the MDP if all the IUs in each stage 
can be regarded as a cluster. The MDP following the optimality principle 
of dynamic programming, i.e., the sub-result of the optimal results is 
always optimal and called as ‘without aftereffect’ [39]. Therefore, the 
equilibrium in the whole stages can be acquired by the segmented 
optimization in each stage if each stage can get the equilibrium solution. 
Only the optimal strategies of previous stage should transmit to the next 
stage, so that the solution space can be limited within JN. To realize the 
MDP, each IU should reach the NE in each stage. Therefore, the 
following theorem can be obtained: 

Theorem:. The unique NE always exists in each stage of the proposed 
stochastic game Ψ. 

Proof:. Two aspects is required for the proof. (i) The strategy set of each IU 
is nonempty, compact, and convex; (ii) The utility model is always concave 
for each IU [40,41]. It is obvious that the strategy set is nonempty, compact, 
and convex. To show the concavity and convexity of IU’s utility function in 
each load interval j, the Hessian matrix with respect to Ai,h,j is expressed as: 

HM =

⎡

⎢
⎢
⎢
⎢
⎣

− kni,h
(
1 + Li,h,j

)2 0

0
− kmi,h

(
1 + HLi,h,j

)2

⎤

⎥
⎥
⎥
⎥
⎦

(33) 

The Hessian matrix is negative definite with respect to Ai,h,j, and the utility 
model should be maximized during the decision-making process, thus, fpr,i,h,j is 
a strictly concave function and Theorem is proved. 

5.3. Solution algorithm for the proposed method 

Because of the multi-dimensional stochastic factors, solving the 
game will face the problem of “curse of dimensionality”, which exists in 
two aspects: (i) in a stage and (ii) inter stages. The first part is because 
each IU has J possible load strategies (i.e., intervals), which will cause J 
possible states, and N IUs will have JN possible load strategies and states 
because of the profit-related characteristic. If simultaneously consider 
all IU’s strategies, the number of states will exponential growth with the 
strategies J and IUs N in one stage. The second part is because the JN 

possible state in current stage will indicate J2N possible states in the next 
stage because the solution in next stage is affected by the previous stage, 
i.e., the thermal prices are affected by the previous thermal energy. For 
H stage, there will be number of JNH states. Therefore, the problem of 
curse of dimensionality makes the game cannot be directly solved by the 
centralized solution algorithm. 

The game is solved in a decentralized way, in which the IUs’ optimal 
strategies in one stage are firstly obtained, and optimal state change 
probabilities of each IU are also got, then transferring the next stage. In 
each stage, each IU separately decides their strategies, and updates their 
strategies through their iteration. Affected by each IUs strategies, the 
dynamic prices serve as the intermediary to connect each iteration in the 
decision-making process. Through the decentralized method, the JNH 

solution space can be reduced to H × JN in H stage, and the JN solution 
space can be reduced to J × N × iterh in one stage, where iterh is the 
number of iterations require to reach the equilibrium. Therefore, by 
adopting the decentralized solution algorithm, the final solution spaces 
of the proposed stochastic game model can be reduced to H× J× N×

iterh, enabling to directly solve the problem. 
The detailed decentralized solution method combined with MDP and 

iterative process is expressed as follows:  
Algorithm 1: Decentralized solution method for the game Ψ  

1. Set the parameters ae, be, λ, λloss, γ, σheat , at,h,1,0, and at,h,3 for the SO, kni,h, kmi,h , and ξ 
for IUs, the probability distributions of thermal, electrical, and PV uncertainties, and 
the iterative index Itermax.  

2. Perform the IUs’ optimization in one time slot and conduct the state transition based 
on MDP. 

For h = 1:H 
Optimize the IUs’ profit by decentralized method in time slot h. 
Input the initial load information, load demand with probability distribution, and 
load interval with probability distribution of IU i in time slot h. 
The thermal price parameter at,h,1 is calculated by (31) based on the thermal load 
information in time slot h-1.  
For iter = 1:Itermax 

For i = 1:N 
For j = 1:J 

According to the load interval j of IU i and load information of other IUs, 
calculate the electrical prices prb,h,j,v,k, prs,h,j,v,k , and thermal price prt,h,j,y by (8–9), 
(15).  

Calculate the utility Fi,h,j,iter in interval j under all the PV generation scenarios 
by (6).   

End for j 
Obtain the maximum utility, and the corresponding load interval is the optimal 

load strategy for IU i in time slot h. 
End for i 
Update the electricity load strategy and thermal load strategy of IUs in time slot 

h. 
If
∑N

i=1Fi,h,j,iter − Fi,h,j,iter− 1 ≤ 1e− 3  

Break; 
End if 

End for iter 
Acquire the state transition probability via (28–30), and implement the state 

transition. 
End for h  

6. Case study 

6.1. Basic data 

A prototype IIES with four IUs and one SO in an industrial park in 
Guangdong Province, China, is used in this study. Fig. 6 shows the 
decentralized system structure. Two types of process IUs are included, i. 
e., an electroplate factory and a chemical plant, and each IU equips with 
a PV panel. Historical load and PV generation data were recorded by the 
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Fig. 6. Decentralized structure of the test system.  
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smart meters installed in individual IUs. The initial data of the hourly 
electrical net load and thermal load are presented in Fig. 7. The pa
rameters of the process industry and the CHP units are set based on the 
realistic thermal load and electrical load data and corresponding refer
ence [7,12,42], as shown in Table 1. Suppose the number of electrical 
load interval and thermal load interval for each IU is 5, which is based on 
each IU’s total load range and load difference in different time slots. The 
initial state transition probability follow the uniform distribution. The 
number of possible PV generation scenario is 10, and the number of 
scenarios in a electrical and thermal load interval is respective 4 and 3. 
Therefore, there are 250 scenarios for an IU. 

6.2. Results of dynamic pricing and load strategies 

Three cases are designed to demonstrate effectiveness of the pro
posed decentralized system with stochastic game model for multi-energy 
scheduling in IIES: (1) Initial cases without any energy scheduling 
method (“Initial”), (2) Non-cooperation game without stochastic factors 
(“Deterministic”), (3) Stochastic game with multi-dimensional stochas
tic factors of decentralized IIES (“Stochastic game”). Moreover, it is 
noted that the Non-cooperative game in Deterministic scenarios is 
conducted based on the centralized system structure that IU should 
transmit their information to the centralized solver, while the Stochastic 
game for IUs with multi-dimensional stochastic factors is based on the 

decentralized decision system. 

6.2.1. Dynamic prices of the SO 
Fig. 8 compares the optimal electricity purchasing and selling prices 

and thermal prices of the SO in the Stochastic game and the Determin
istic cases. The price is calculated by the boundary value of load interval. 

The prices are determined by the SO and affected by the IUs’ load 
distribution. In time slots 0–7 and 20–24, the purchasing and selling 
prices are almost keep unchanged, especially the deterministic scenario. 
The reason is that no PV production is available in those time slots, so 
that all IUs serve as buyers, optimizing their load strategy to the similar 
values to get maximum profit. The dynamic prices are friendly to IUs in 
time slots 8–19. Specifically, for the buying prices, in time slots 9–18 
when the PV production reaches the highest level, SO reduces the pur
chasing prices to stimulate IUs purchasing energy, increasing the buyer’s 
profit. For the selling prices, in time slots 9–16, SO slightly reduces the 
selling prices to avoid selling too much energy to increase the local 
consumption of PV production. It can be seen that the purchasing prices 
are always higher than the selling prices, preventing IUs from buying 
and selling energy at the same time. 

The thermal prices increase with the thermal energy according to 
(24). In time slots 9–18 with higher PV production, the thermal prices 
are higher because the thermoelectrical coupling results in the increase 
thermal consumption of IUs in those time slots. The thermal prices also 
remain at a higher level in time slots 19–24, producing higher profit for 
the SO resulted from the peak thermal load requirements. The thermal 
price valley in time slot 17 is resulted from the low thermal load level in 
time slot 16. 

Although the distribution of prices is similar in the Stochastic and 
Deterministic cases, some fluctuations exist. The comparison between 
the Stochastic game and Deterministic cases demonstrates that un
certainties will increase the fluctuations in all time slots. For time slots 
1–7 and 19–24 with no PV production, the fluctuations are caused by the 
ECU and TCU, while for the time slots 9–17, the fluctuation also resulted 
by the PV uncertainties. The reason is that considering the multi- 
dimensional stochastic factors can obtained multiple possible load de
mands and PV generations, enlarging the solution space of electrical and 
thermal prices, so that the boundary value indicating violent 
fluctuations. 

6.2.2. IU’s load strategies 
Fig. 9 shows the IUs’ hourly electricity load strategies for all cases. 

The electricity net loads in time slots 1–9 and 9–18 is higher than the 
initial load, and in peak time slots 19–24 are decreased. Although the 
purchasing is relatively high in time slots 1–9, the electricity load is 
increased. One of the reasons is that the thermal loads at these time slots 
are increased, the increased electrical loads resulted by the thermo
electric coupling. Another reason is that the increasing electricity load 
led to a higher utility for IUs based on the utility model (9). In time slots 
9–18, the valley electricity load is increased due to the lower purchasing 

Fig. 7. Electrical load, PV energy, and thermal load of IU.  

Table 1 
Parameters and initial values (0) of the proposed framework.  

Parameter Value Parameter Value Parameter Value 

λloss  0.05 ae  0.0021CNY/ 
kWh 

σheat  1 

λ  0.4 be  0.302CNY kni,h  100CNY/ 
kWh 

Tdelay  1 at,h,1,0  0.01CNY/kWh kmi,h  15CNY/ 
kWh 

ξ  0.5 at,h,3  0.05CNY εt  1  

Fig. 8. SO’s pricing strategy.  Fig. 9. Electricity net load of IU in three cases.  
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prices, selling prices, and higher PV production. Contrary to time slots 
1–9, the electricity load in time slots 19–24 is decreased for keeping 
their utilities. That is because the purchasing prices are relatively higher, 
and the decreased thermal load also has influence due to the thermo
electrical coupling. 

The thermal load strategies in the three cases are shown in Fig. 10. 
The optimal thermal load distribution with and without the consider
ation of stochastic factors are both flatted in all time slots. The thermal 
load peak in time slots 19–24 is reduced, while the thermal load valley in 
time slots 1–8 and 13–17 is increased. An increase in thermal prices, as 
shown in Fig. 7, results in a thermal load decrease, which can be un
derstood based on (9). 

Figs. 9 and 10 also show that, the load profile of the Stochastic game 
is more volatile than those derived from the Initial and Deterministic 
cases. Specifically, for the electricity load, deterministic case can render 
the load close to 0 in time slots 13–15 with high PV production, how
ever, when considering the stochastic factors, the load distribution 
presents the fluctuation characteristic. The reason is that the multiple 
possible occurrence scenarios are included in the load strategies as an 
interval form, enlarging the range of load adjustment. For the thermal 
load, the fluctuations are evenly distributed at all time slots because the 
simple trading process for thermal load and slight influence of PV pro
duction, i.e., each IU can only buy thermal energy from CHP units, and 
the energy is greatly determined by the thermal prices. Although the 
fluctuation is different in Stochastic game and Deterministic cases, the 
trends are similar for both thermal and electrical load. 

6.2.3. Utility with and without the uncertainties of IUs 
Fig. 11 shows the hourly utility of IUs in the three cases. As 

illustrated in the figure, the utilities of the two optimization cases are 
higher than that of the Initial case, and the largest one is the summation 
of the utilities in the Stochastic game with 41, 212 CNY. The utility and 
the corresponding optimal strategies are obtained by comprehensively 
considering the uncertainty of PV generation, ECU, and TCU. The utility 
increases during the time slots 1–8 with higher load consumption and 
time slots 19–24 with lower load consumption, because the profit of IUs 
is determined by both the energy trading and the process industrial 
production. Utility of the Stochastic game case is higher than Deter
ministic case in almost all hours. But in time slots 1–8, and 19–24 with 
no PV generation, the utility of the Stochastic game case is not much 
different from that of the Deterministic case, only slightly increases. The 
utility of the Stochastic game case is much higher than that of the 
Deterministic case in time slots 9–18 with high PV generation. The 
reason is that there are multi-dimensional stochastic factors from load 
and PV generation at the time, which affects the load strategy, while the 
Deterministic case cannot deal with the uncertainty so that has a worse 
utility. 

6.3. Computation time for the centralized and decentralized system 

The stochastic game model for multi-energy scheduling in IIES is 
developed based on the decentralized decision system, which is difficult 
to be solved with centralized method, as mentioned in Sec. II and Sec. V. 
C. In this section, the computation time of the centralized decision 
system for the Deterministic case [16], and the decentralized decision 
system for the Stochastic game case are compared and shown in Table 2. 
It is clear that the computation time under the decentralized system is 
shorter than that of the centralized system. The reason is that the 
massive data from stochastic scenarios will result in “curse of dimen
sionality” in the centralized solver, and the solution space would be 
exponential increased, so does the computation time. Moreover, the 
computation time of the centralized system will be longer with the 
increasing number of IUs. However, not only can the proposed decen
tralized system realize the interaction among IUs with multi- 
dimensional stochastic factors, but also IUs can independently make 
decision, which reduces the computation time by discrete processing 
and distributed iterative method. Besides, the short computation time 

Fig. 10. Thermal load of IU in three cases.  

Fig. 11. Profit of IU.  

Table 2 
Computation time of centralized and decentralized system.  

Solution algorithm Centralized Decentralized 

Computation time (s)  5.36  1.58  
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can also be maintained by increasing the number of solvers when the 
number of IU increases. 

6.4. Analysis of scenarios and intervals of the proposed method 

Five cases are designed to analyze the effectiveness of the proposed 
approaches on uncertain multi-energy scheduling in IIES: (1) Doubled 
the number of PV generation scenarios to 20 (“Scenario-PV”), (2) Set 10 
scenarios in an electrical load interval (“Scenario-EL”), (3) Set 6 sce
narios in a thermal load interval (“Scenario-TL”), (4) Increase the 
number of electrical load interval to 10 (“Interval-EL”), (5) Increase the 
number of thermal load interval to 10 (“Interval-TL”). Besides, set 
original case that keep the number of scenarios and intervals unchanged 
(“Original’). 

Fig. 12 shows the optimal electrical load of the five cases and the 
original case. For convenience, the electrical load interval is expresses as 
the median value of the interval. It is clear that the trend of electrical 
load is similar in all cases, but differences are still existed in each case. 
Comparing the Scenario-PV case with the Original case, the electrical 
load is higher during the time slots 7–13 and 17–18, lower during time 
slots 14–16. The reason is that the increased scenarios of PV generation 
intensity the uncertainties and fluctuate the IUs’ load strategies. 

The comparison results of Scenario-EL and Interval-EL show that 
increase the number of scenarios in an electrical load interval has rela
tively little influence on the IUs’ electrical load strategy, while increase 
the number of intervals for electrical load makes a difference to the IUs’ 
electrical load strategy. The reason is that more intervals indicating 
more specific load strategies, increasing IUs’ decision flexibility for 
flatting load strategies. The load interval is expressed as an expectation 
form, so that the scenarios have slightly influence on the IUs’ decision. 
The results of Scenario-TL and Interval-TL shows the optimal electrical 
load strategy is affected slightly by thermal load scenarios and intervals, 
a little difference arise from the thermoelectric coupling. 

The thermal load strategies in the six cases are shown in Fig. 13. 

Similar to Fig. 12, the interval’s median values are used to express the 
thermal load strategy. It is evident that the trend of thermal load in the 
five cases is similar to that in the original case. Besides, the influence of 
increasing the number of thermal load intervals and scenarios on 
Scenario-TL and Interval-TL is similar to that in the electrical load, i.e., 
IUs’ decision flexibility enhances with the intervals’ number and result 
in flat load strategies, while scenarios’ number have slight influence. For 
the Scenario-PV, Scenario-EL, and Interval-EL, due to the thermoelectric 
coupling and the relationship of electrical load and PV generation, the 
thermal load strategies in these cases are a little bit different from that in 
the Original case, but the variations are slight. 

Fig. 14 shows the hourly utility of IUs in the six cases. It is shown that 
in the Scenario-PV, the total utility 41,184 CNY is lower than that in the 
Original case. This phenomenon indicates that the intensified PV un
certainties fluctuate IU’s load strategies then reduce IUs’ utility. The 
utility in Scenario-EL and Scenario-TL also decreases. The reason is that 
the load uncertainties is intensified by the increased scenarios, similar to 
the condition of PV generation scenarios, which slightly affects IU’s 
strategies, then reduces IU’s utility. However, the utility is enhanced 
through increasing intervals’ number, e.g., in Interval-EL with 41,385 
CNY and Interval-TL with 41,288 CNY. That is because more intervals 
indicate more specific load strategies, which increases IUs’ decision 
flexibility then increases their utility. 

6.5. Practical feasibility and convergence of solution algorithm 

Interfaces can be designed in UEMS for IUs to collect their PV gen
eration data, thermal and electrical load data. Based on these data, the 
discrete probabilities can be obtained. Then the multi-dimensional sto
chastic factors can be considered in the modeling process using these 
probabilities. As the proposed stochastic game model requires the iter
ation between IUs and the transmission of load and prices signals, it is 
expected that a few bytes of data shall be bidirectionally exchanged. 
Based on the wireless communication channels in private 4G/5G 
network with Virtual Private Network (VPN), the information sharing is 
realized through the equipment support of SO and IUs’ UEMS. The 
process method of stochastic factors and decentralized solution algo
rithm is proposed based on the decentralized IIES framework, which 
solves the problem of curse of dimensionality in the stochastic game 
model and obtains the optimal strategy in a short time. The proposed 
decentralized solution algorithm is implemented in MATLAB 2018a, and 
solved on a computer with Intel Core i5-8250 CPU 1.60 GHz, 16 G 
memory. The computation time is illustrated in Table 3 with different 
numbers of IUs. It is shown that the computation time increases with the 

Fig. 12. IUs’ electrical load in different intervals and scenarios.  

Fig. 13. IU’s thermal load in different intervals and scenarios.  

Fig. 14. IU’s profit in different intervals and scenarios.  

Table 3 
Computation time with the number of IUs.  

Number of IUs 4 8 16 32 64 

Computation time (s)  1.58  3.64  8.18  17.92  41.62  
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number of IUs, but the growth rate is similar to a constant. That is 
because the computation complexity of the decentralized solution al
gorithm is O(n) determined by the iterations among IUs. The short 
computation time reflects the small computation cost. Besides, the 
decentralized system structure with multiple smart terminals in IUs 
provides the chance of parallel computation, which implements the it
erations based on individual IUs’ smart terminals. Thus, the proposed 
approach is scalable to face the increase of IUs’ number. 

7. Discussion 

In this section, the performance of the proposed decentralized IIES 
framework, multi-party stochastic energy scheduling approach and 
decentralized solution algorithm is validated based on the comparison 
between the obtained results. 

Firstly, the influence of considering multi-dimensional stochastic 
factors on multi-energy scheduling are analyzed through the decen
tralized decision support system with stochastic game model. The un
certainties come from PV output, electrical load and thermal load of IUs’ 
industrial production process. In the comparison of results from the 
Deterministic case and Stochastic game case, it can be concluded that 
the multiple possible occurrence scenarios considered in the Stochastic 
game case enlarge the range of load adjustment and the solution space of 
prices, for facing the uncertainties of PV outputs and IUs’ industrial 
production process. Besides, the utility of IUs increases from 40,537 CNY 
to 41,212 CNY due to the optimal and flexible load strategies. 

Secondly, although centralized system structure has been applied in 
multiple cases [16,21,28], it cannot be used to deal with the interactions 
between IUs with multi-dimensional stochastic factors. However, the 
proposed decentralized solution algorithm can reduce the solution space 
of the stochastic multi-energy scheduling, i.e., from JNH to H× J× N×

iterh, while shortening the computation time by nearly 70.1% compared 
to the centralized system. Besides, the parallel computation can be 
realized by the decentralized system, which can also resolve the scal
ability problem, as we expressed in Sec. V. E. Therefore, the decentral
ized decision support system with the stochastic game model provides 
the feasible method for the interaction of stochastic IUs, and deal with 
the problem of high solution space and long computation time. 

Thirdly, the influence of PV uncertainties, the number of scenarios 
and intervals of load strategies on the stochastic energy scheduling are 
analyzed. In terms of the PV outputs, it affects the final load strategies by 
influencing the netload and prices. Therefore, the fiercely fluctuating PV 
output will lead to volatile load strategies, as shown in Figs. 12 and 13. 
Besides, the intensified PV uncertainties decrease the utility of IUs. The 
more scenarios of load strategies make the load uncertainty more severe, 
which has little influence in the final load strategies, but similar to 
fiercely fluctuating PV output also decrease the utility. That is, the more 
the stochastic factors fluctuate, the more it reduces the IUs’ utility. The 
number of intervals for load strategies reflects the degree of subdivision 
for stochastic factors in electrical load and thermal load. Moreover, more 
load intervals contribute to higher utility, which is shown in Fig. 14. 

8. Conclusion 

This paper proposes a decentralized decision system for the multi- 
energy scheduling in IIES, in which the multi-dimensional stochastic 
factors of IUs and the co-decision mechanism for the thermal load and 
electrical load is considered by stochastic game model. Numerical re
sults are obtained through the MDP and solution algorithm, which 
deliver the optimal dynamic prices, load strategies, and profits. The load 
and pricing strategies have an interactive influence, and they are also 
affected by the PV generation and thermoelectric coupling. The influ
ence of multi-dimensional stochastic factors is illustrated through the 
comparison of three designed cases. By considering the state transition 
in the game model, the multi-dimensional stochastic factors can be re
flected into the dynamic game process, which better fit flexible load and 

price strategies then enhances 9.4% profits for IUs as compared to other 
cases. Besides, considering more scenarios increases the uncertainties 
and against IUs’ decision, while dividing more intervals increases IUs’ 
decision flexibility then enhances IU’s profit. Through the analysis of 
computation time, it is concluded that the decentralized system has a 
better solution performance in the proposed stochastic game model. 
However, some limitations of this work lie in the application environ
ment, which requires modern grid infrastructures and may hinder the 
application in some places. Future research would explore the relation 
among the industry product, industrial production process, and energy 
scheduling. Then consider stochastic factors from IUs’ subjective deci
sion, and investigate the approaches to further improve computational 
performance of the IIES scheduling problem. 
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