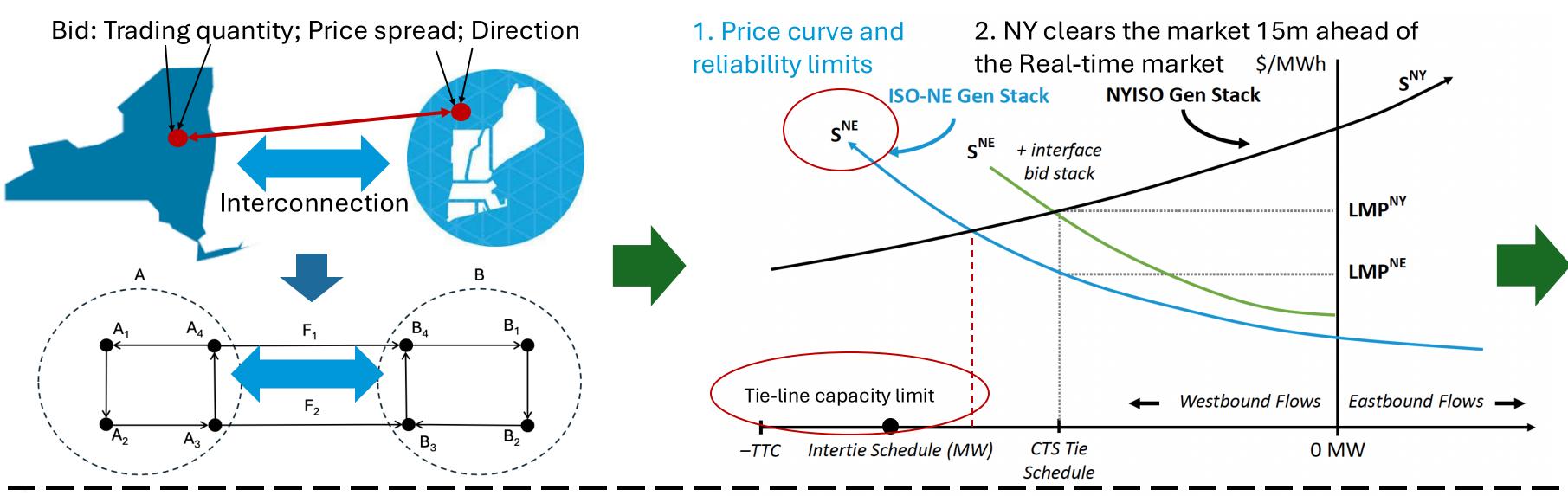
# Efficiency Evaluation and Improvement of Coordinated Transaction Scheduling

new england


Liudong Chen<sup>1,2</sup>, Feng Zhao<sup>1</sup>

<sup>1</sup>Market and Optimization, Advanced Technology Solution, ISO-NE; <sup>2</sup>Earth and Environmental Engineering, Columbia University

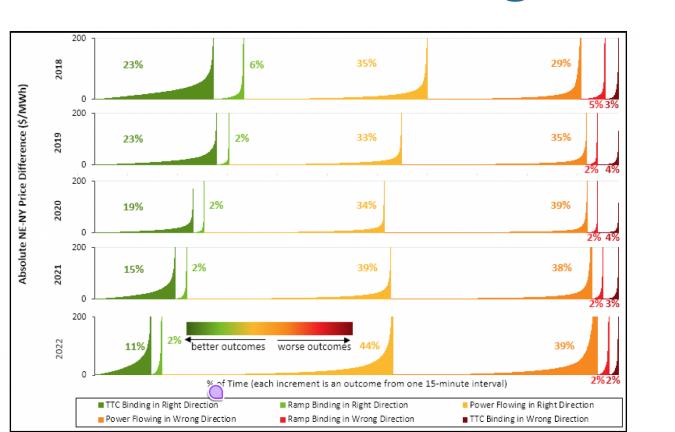


Personal website

## **Coordinated Transaction Scheduling**



## Research questions:


Find a proxy price reflects economic flow direction

Impact of hedging behavior on the CTS efficiency

**Future work:** 

CTS settlement-focused LMP forecasting methods

# **Regional Proxy Price**



Internal Market Monitor reports show CTS flow in a bad economic performance

#### Reason:

- The benchmark to evaluate economic performance is unsuitable
- CTS is really bad

# Our way:

- Find a scalar function: Proxy Price = f(LMP)
- A static function about distributions on node

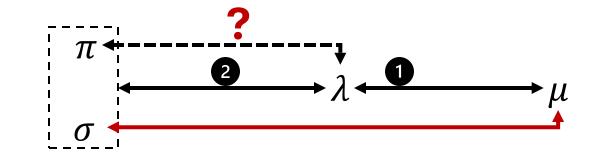
## **Theorem:**

Except for three special cases, there is no scalar function mapping LMP  $\pi$  to proxy price  $\lambda$  independent to the operating conditions  $\sigma$ 

### Joint economic dispatch of two regions:

#### Primal variable:

- Generation
- interface flow
- nodal power injection
- Focus on the shadow price of each constraints:
- Line congestion
- Nodal power balance (KCL) Power balance in each area
- Interface congestion


#### **Stationarity:**

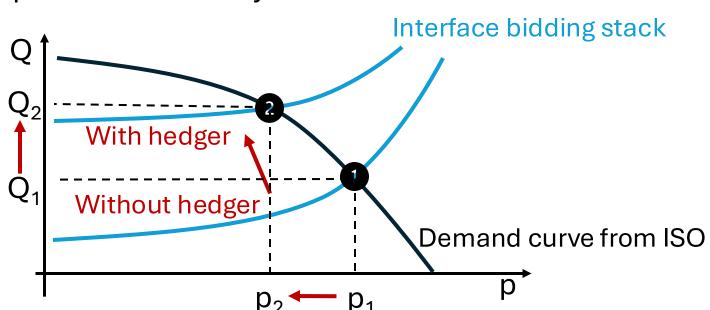
$$f_{\rm tie}$$
:  $\lambda_{\rm A} - (\lambda_{\rm B} - \gamma) - \mu^- + \mu^+ = 0$ . Reflect the economic flow direction

regarding area shadow price

 $\lambda_A$ ,  $\lambda_B$ 

$$p_i$$
:  $0 = \pi_i - \lambda_{\mathrm{A}} + (H^T \sigma)_i - h_{\mathrm{tie},i}^T \gamma, \forall i \in N_{\mathrm{A}}, \ 0 = \pi_i - \lambda_{\mathrm{B}} + (H^T \sigma)_i - h_{\mathrm{tie},i}^T \gamma, \forall i \in N_{\mathrm{B}}.$  Reflect area shadow price regarding LMP




## Special cases:

- Only interface binding, all lines are not
- Interface not binding
- Only one tie-line in the interface

# **Hedging Behavior**

## **Explanations:**

- Some participants accept a negative price to trade power inter-regional.
- Define hedger and arbitrager. Hedger have day-ahead positions, and CTS only clears in the real-time market.
- Understand the impact of hedging behavior on the CTS operation efficiency.



#### Phenomenon:

With forecast error

- Clearing price reduced, so more likely to have reverse prices in real-time settlement
- Clearing amount increases, possibly resulting in greater social welfare

Internal Market Monitor reports show

aggressive CTS bidding behavior



- **Metrics:** Reversal cost
- Social welfare
- Forecast-error robustness
- **Supply function bidding and game formulation:** Let the linear bidding function as  $q_i = C_i(P)$
- Hedger,  $C_j(0)=B_j$ ,  $C_j'(q_i)\approx 0$  Payoff: Arbitrager,  $C_j(0)\approx 0$ ,  $C_j'(q_i)>0$   $\pi_i=q_iP(Q)-\int_0^{q_i}C_i^{-1}(s)ds$ ,
  - Nash game exists unique Nash equilibrium
  - Three regions with hedgers
- Demand curve  $P=\alpha-\beta Q$  with  $\alpha_r=\alpha_f+\varepsilon_\alpha$ ,  $\beta_r=\beta_f+\varepsilon_\beta$ , the imbalance flow is  $Q=\left|Q_f-\frac{\alpha_r}{\beta_r}\right|$

M. Ndrio, S. Bose, L. Tong and Y. Guo, "Coordinated Transaction Scheduling in Multi-Area Electricity Markets: Equilibrium and Learning," in IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 996-1008, March 2023

2022 Annual Markets Report, ISONE Internal Market Monitor Kirschen, D. S., & Strbac, G. (2018). Fundamentals of power system economics. John Wiley & Sons