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Abstract—Distribution network reconfiguration is an ef-
fective method to face the problem of power fluctuation in
the power system. Previous studies have focused on math-
ematical optimization techniques with complex modeling
processes and heuristic algorithms with time-consuming
solving processes to obtain the optimal reconfiguration
strategy. In this article, a hybrid data-driven and model-
based distribution network reconfiguration (HDNR) frame-
work is proposed, where the model-based module includes
model reduction and goal-oriented clustering to cluster the
identical reconfiguration strategies. Here, the data-driven
module is implemented through a long short-term memory
network to learn the mapping mechanism between load
distribution and optimal reconfiguration strategies. The
model-driven module and the data-driven module are cou-
pled through the proposed hierarchical network recovery
process, which presents the reconfiguration results layer
by layer. Finally, the numerical case study on the IEEE
33-bus, IEEE 119-bus, and IEEE 123-bus network shows
the validity of the proposed HDNR framework. It is shown
that the solution space is reduced, which contributes to
reducing computation time and resources. Moreover, the
obtained accuracy of the reconfiguration strategy is higher
than most existing research even with limited data samples.

Index Terms—Distribution network reconfiguration
(DNR), goal-oriented clustering, hybrid data-driven and
model-based, long short-term memory (LSTM), network
reduction and recovery.

INTRODUCTION

THE electric load distribution across buses in a distribu-
tion network (DN) dynamically changes as the distributed

energy resources (DERs) and load patterns vary. The power
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flow (PF) of the DN changes accordingly [1]. With the more
complex operation and control of the DN, power loss reduction
has become challenging if the topology of the DN is fixed
under a changing load environment [2]. Distribution network
reconfiguration (DNR) can change the states of sectionalizing
switches and tie switches in the DN. The DNR provides an
optimal network structure to realize minimum power losses and
achieve better load balancing [3]. In the traditional DN, DNR
is not a frequent operation. However, with the application of
high-speed switching devices in DN [4], the DNR is developing
toward real-time reconfiguration for maintaining the optimal
operation condition of DN. Therefore, it is necessary to shorten
the computation time and reduce the computation resource of
the DNR problem.

Since DNR is a complicated combinatorial optimization prob-
lem and the calculation of PF is nonlinear, it is difficult to obtain
the optimal reconfiguration strategy of a large-scale DN within
a short time. Many studies on this topic can be divided into
two categories: 1) mathematical optimization techniques and 2)
heuristic algorithms. In the mathematical optimization category,
a mixed-integer cone programming model for the DNR problem
is proposed [5], which uses exact loss modeling and converges
to the global optimal solution. A two-stage optimization model
for DNR and a mathematical model for hourly DNR with renew-
able generation fluctuations are solved based on a similar cone
programming model [6], [7]. The Benders decomposition-based
approach is also used as an effective method to solve the DNR
model with the aim of minimizing the power loss and restricting
the voltage volatility [8]. To reduce the computation complexity,
the nonlinear term of the network reconfiguration (NR) problem
can be linearized by an efficient linearization procedure, then the
augmented ε-constraint method is used to solve the NR problem
[9]. For considering the uncertainties of DERs, a state-based
sequential NR strategy is developed by using a Markov decision
process model, which is solved by an approximate dynamic
programming approach [10]. However, the complex process of
modeling DNR brings about the difficulty of using the cone
optimization model, which often leads to a cumbersome simpli-
fication process and over-simplified assumptions in the solving
process [11].

Various heuristic algorithms are also used to solve the DNR
problem. A harmony search algorithm (HSA) is proposed to
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obtain the optimal reconfiguration strategy [12], [13]. Fur-
thermore, a segmented-time reconfiguration problem of DN is
solved by a hybrid particle swarm optimization (PSO) method
[14]. To improve the accuracy of the heuristic algorithm, a switch
opening and exchange (SOE) method for the DNR is proposed
[15], which adopts a combination of the sequential switch open-
ing method and the branch exchanging method [16]. Moreover,
crossover and mutation are introduced in the heuristic algorithm
to speed up the process of obtaining an optimal strategy [17].
For example, an improved tabu search algorithm is presented
to solve the loss-minimization reconfiguration in large-scale
distribution systems [18]. A genetic algorithm (GA) is applied
to minimize the day-ahead total operation costs of distributed
generations (DGs) and responsive load, and obtain the optimal
topology for the DN [19]. The random-key generic algorithm
is used to minimize resistive losses, the risk of violating state
estimator accuracy, and the number of meters installed in the
DN [20]. A multiobjective molecular differential evolution al-
gorithm is designed to solve the NR model with the objectives
of minimizing three-phase unbalanced factors and the number
of switching times [21]. To improve the population diversity and
search ability of evolutionary algorithm in the solving process
of DNR problem, a hybrid evolutionary algorithm combing
shuffled frog leaping algorithm and particle swarm optimization
method is proposed to obtain the optimal NR strategy [22].
Although these heuristic methods perform well in specified
scenarios, the process of converging to an optimal strategy is
slow and time-consuming for a large-scale DN.

Data-driven methods, which include machine learning with
many kinds of neural networks, are applied to the DN. By
learning the underlying mapping mechanism between the input
and output of the neural network, a large amount of historical
data is effectively used to solve these problems. For example,
reactive power optimization considering uncertainty in DN [23],
distribution system state estimation [24], parameter and topol-
ogy joint estimation in DN [25], topology identification of low
voltage DN [26], and event detection for the distribution system
[27] are investigated. The performance and dimension of the
neural network are affected by the amount of data and the type
of data. Generally, since the switch actions are determined by
the load distribution across buses on the network, the mapping
mechanism between load data and the optimal reconfiguration
strategy can be approximated by a neural network, which can
avoid the complex modeling process and long computation time
of traditional methods.

However, few studies focus on the data-driven method in
the DNR problem, most of them consider the real-time data
measurement for DNR [28], or use collected load data for
reinforcement learning [29]. The mapping mechanism has also
been studied in [30] through the data-driven method. The focus
is on the real-time reconfiguration, while the solution space,
computation dimension, required data, and learning accuracy
are still the open question. Therefore, although the application of
the data-driven method in the DNR problem has been explored,
three challenges about the requirements of large amounts of
data and the high computation dimension have still existed:
1) dimension reduction of the DN by reducing the number of

buses, which can avoid the complex learning process resulting
from the large solution space of the DNR problem; (2) data
labeling for the optimal reconfiguration strategy learning, which
is due to the difficulty of directly applying a large amount of load
data to the data-driven DNR problem; and 3) accurate optimal
reconfiguration according to the reduced network.

Therefore, to address the aforementioned problems, a hybrid
data-driven and model-based distribution network reconfigura-
tion (HDNR) framework is proposed to reduce the solution space
and realize the fast reconfiguration. The work here has the poten-
tial to open new research opportunities for the complex network
related problems in terms of network reduction, processing, and
recovery. The contributions are as follows:

1) An HDNR framework is created with the DN model
reduction and hierarchical recovery process. In the frame-
work, a goal-oriented clustering model for reconfigura-
tion strategies is proposed, while the data-driven method
is designed for the mapping mechanism. Besides, the
data-driven and model-driven methods are coupled by the
hierarchical recovery process.

2) The model-driven method based on the model reduction
and goal-oriented clustering model is proposed for obtain-
ing the data sample of the learning network. The model
reduction is proposed to reduce the number of buses in the
DN for the smaller solution space of the DNR problem
and input matrix of the learning network. Furthermore,
the goal-oriented clustering model for reconfiguration is
provided to build the data class label for the learning
network.

3) The data-driven method is realized with the help of the
long short-term memory (LSTM) neural network. Hier-
archical databases are built by combining the data-driven
method, the proposed recovery process, and the model-
driven method. Each database in one layer corresponds
to one specific recovery network and the corresponding
solution is gradually approaching the precise solution.
Then, the optimal reconfiguration strategy can be ob-
tained by utilizing both the model-driven and data-driven
methods.

II. HDNR FRAMEWORK

The states of multiple switches should be decided simultane-
ously in the DNR. The mentioned fact results in a complex large-
scale combinational optimization problem, and brings about
great challenges to efficiently decide the optimal reconfiguration
strategy. By reducing the solution space of switch combinations
and using the data samples to implement a data-driven method,
the proposed HDNR framework improves the efficiency of
obtaining a reconfiguration strategy. The three aforementioned
challenges of the DNR problem can be solved by the HDNR
framework shown in Fig. 1.

First, a model reduction is provided to reduce the neural
network input dimension through aggregating multiple buses, re-
ducing the number of buses, switches, and corresponding switch
combinations in the DN. Second, a goal-oriented clustering
model is proposed to obtain the cluster and data class label of an
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Fig. 1. HDNR framework.

optimal reconfiguration strategy. The goal-oriented clustering
model groups the data samples with the same reconfiguration
strategy. According to these clusters, the data-driven learning
method can obtain the mapping mechanism between load dis-
tribution and the optimal reconfiguration strategy, and realize
fast decision-making. Finally, a hierarchical recovery process is
used to implement lossless decision-making with fewer buses
in the DN. The process is nested in the goal-oriented cluster-
ing model and learning method to recover the switches from
the reduced network hierarchically. It is noted that the HDNR
framework possesses a lossless decision-making process. The
complex reconfiguration model is reduced to a simple one based
on the HDNR framework, and the optimal switching strategies
obtained through the HDNR framework are the same as the
original network.

III. DISTRIBUTION NETWORK REDUCTION

A DN can be regarded as a directed graph composed of buses
and branches G = (V,E,A), in which V is a finite set with N
buses, E is the set of edges, A is the adjacent matrix of G, and the
degree of a bus used to express the number of connected buses
is defined as D [31], [32]. The network structure is shown in
Fig. 2(a). Each branch has a sectionalizing switch or tie switch,
and each bus in DN is connected by a branch with a switch. One
tie switch can form a loop with other sectionalizing switches.
In the initial state of the network, as shown in Fig. 2(a), the tie
switch will be open to satisfy the radial structure requirement of
the DN.

Fig. 2. Network reduction process.

Definition 1: In a DN defined as G, network reduction is
conducted in the way that an equivalent bus is a combina-
tion of sequentially connected buses with D = 2, and the
corresponding equivalent switch is also an aggregation of the
switches between buses with D = 2. At the same time, the
network power losses should keep unchanged.

According to Definition 1, buses (3, 4, 5), (6, 7, 8, 9), (10,
11), (12, 13, 14, 15, 16), and (18, 19) in the 20-bus network in
Fig. 2(a) can be aggregated into one bus, respectively, resulting
in the network in Fig. 2(b). The bus and branch in red is the
aggregated (equivalent) bus and equivalent branch. For example,
bus 3′ is the equivalent bus of buses (3, 4, 5) and branch 2′–3′ is
the equivalent branch of branches (2–3, 3–4, 4–5).

The equivalent nodal load and branch impedance of the net-
work reduction process can be obtained by external network
equivalence [33]. However, the external network equivalence is
complex, dynamic, and time-consuming. The topology of the
external network and the states of the network switches change
constantly in the DNR. Therefore, it is difficult to use the external
network equivalence in the DNR problem. Theorem 1 below
is proposed to provide an alternative method for obtaining the
parameters of the reduced network.

Theorem 1: The equivalent bus is a combination of the
sequentially connected buses with D = 2 under the constraints
of constant branch power loss, and the branch parameters and

⎧⎨
⎩

X ′ = X01 +X12 + · · ·+X(n−1)n

Q′ =
√

(Q1+Q2+···+Qn)
2X01

(X01+X12+···+X(n−1)n)
+ (Q2+···+Qn)

2X12

(X01+X12+···+X(n−1)n)
+ · · ·+ Qn

2X(n−1)n

(X01+X12+···+X(n−1)n)
(1)

⎧⎨
⎩

R′ = R01 +R12 + · · ·+R(n−1)n

P ′ =
√

(P1+P2+···+Pn)
2R01

(R01+R12+···+R(n−1)n)
+ (P2+···+Pn)

2R12

(R01+R12+···+R(n−1)n)
+ · · ·+ Pn

2R(n−1)n

(R01+R12+···+R(n−1)n)
(2)

ΔP = ΔP2 + . . .+ΔPn +ΔPn+1

=
(R12+R23+...+Rn(n+1))

U 2

(√
(P2+PS+...+Pn+1)

2R12

R12+R23+...+Rn(n+1)
+ (PS+...+Pn+1)

2R23

R12+R23+...+Rn(n+1)
+ . . .+

Pn+1
2Rn(n+1)

(R12+R23+...+Rn(n+1))

)2

= R′
U 2 P

′2 (3a)

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 17,2024 at 19:04:05 UTC from IEEE Xplore.  Restrictions apply. 



2946 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 5, MAY 2022

Fig. 3. Equivalence process.

nodal load should meet (1) and (2), Both are shown at the bottom
of the previous page,

Δ Pn =
Pn

2

U 2
n

R(n−1)n (3b)

where R′, X ′, P ′, and Q′ are the resistance, reactance, active
power, and reactive power of one branch, respectively; R(n−1)n

and X(n−1)n are the impedance of branch (n−1)−n, Pn and
Qn are, respectively, the active power and reactive power of the
bus n.

Proof: Fig. 3 shows a general network with (n + m1 + m2)
number of buses. The equivalence process of the branches
1 − (n + 1), (n + 3) − (n + m1) and (n+m 1 + 1) −
(n + m 1 + m2) is described in this figure. The active power
loss of the branch 1 − (n + 1) in Fig. 3(a) can be calculated
and expressed in (3a) shown at the bottom of the previous page.
Here, we assume that the nodal voltage is the same [3], [34].

The equal sign in (3b) is satisfied due to the small reactive
power and power loss of a single branch, and the equal sign in
(3a) is satisfied because the deviation of nodal voltages is small
under normal operation. n buses can be equivalent to one bus
based on (3a) and (3b), while the value of power losses caused
by the nodal power and branch impedance remains unchanged.
According to (3a) and (3b), (2) can be obtained by recursion,
which shows the equivalent active power and resistance. Sim-
ilarly, when the reactive power losses remain unchanged, the
mathematical expression [i.e., (1)] of equivalent reactive power
and reactance can be obtained.

Specifically, the influence of null injection bus and weakly
mottled nets on the model reduction is also analyzed. For the
null injection bus, the power is zero, and there is no influence
on the model reduction. As the branches 1− (n + 1) shown in
Fig. 3, suppose the bus n is a null injection bus, the Pn in the
model reduction (3) is changed to 0. The calculation method of
equivalent active power P ′ of the model reduction is similar to
the positive active power. Therefore, the null injection bus does
not affect the network reduction process and the calculation of
equivalent nodal load.

For the weakly mottled nets, suppose the branch 2–3 in Fig. 3
has a large resistance R23, the model reduction is expressed as

ΔP =
(R23)

U 2

⎛
⎝
√

(P3 + · · ·+ Pn+1)
2R23

(R23)

⎞
⎠

2

=
R′

U 2
P

′2.

(4)
The resistance of other branches can be set as 0 when com-

pared with the R23, so R12 +R23 + · · ·+ Rn(n+1) = R23 .
The equivalent power P ′ can also be calculated by the model

reduction. Therefore, the weakly mottled nets (which have large
branch resistance) can also be reduced by the model reduction
and do not influence the network reduction process.

According to Theorem 1, the model reduction is only af-
fected by the nodal load and the branch impedance that are
directly associated with the reduced branch. The number of
network buses (i.e., the scale of the network) may not affect
the effectiveness of the model reduction. The model reduction
can be regarded as an internal network equivalence and remain
unchanged when the external network changes. As a result, the
problem that network equivalence changes with the structure of
external network is avoided, which reduces the computational
complexity, and shortens the computation time. It is noted that
the variation of DGs and loads have no influence on the model
reduction because the model reduction only reduces the network
structure for the DNR problem. The variation of DGs and flexible
loads during the reconfiguration process remain. To deal with
the variation, the reconfiguration model should be built with the
consideration of variation.

As the optimization goal of the reconfiguration problem is to
get minimal power losses, for the bus with D ≤ 2, the model
reduction keeps parameters of the reduced network and the
original network equivalence in terms of the power loss, so that it
keeps the optimality at the theoretical level. However, for the bus
with D > 2, the value of power losses may change a little after
the network reduction. Because the power losses are determined
by the impedance of all branches and the load of all buses.
Therefore, some correction needs to be introduced to address
this issue and obtain the optimal reconfiguration strategies. In
Section IV, a specific correction method for DNR problem with
meshed networks is introduced in detail.

IV. GOAL-ORIENTED CLUSTERING FOR RECONFIGURATION

In general, directly solving the DNR problem is not an
easy task because of its complex combinatorial nature. A goal-
oriented clustering model is proposed here to reduce the problem
size and computational complexity. The goal of clustering is
to group optimal reconfiguration strategies under the objective
of minimizing power losses. The clustering process basically
solves the following problem [35]:

Γm ∈ argmin g (K∗
S (Γm (K∗

Sm)) ,K∗
Sm) , 1 ≤ m ≤ M

(5)
where m denotes the clustered index, the number of clusters
is M, K∗

Sm is the optimal reconfiguration strategy in cluster
m, Γm minimizes the sum of Euclidean distance between the
optimal reconfiguration strategy K∗

Sm and its representative
Γm(K∗

Sm), and g(·) is the clustering objective function.
The goal-oriented clustering results can be expressed as fol-

lows:

C∗
m =

{
K∗

Sm|g (K∗
Sm,KS−m) ≤ g (KSm,KS−m) ,

1 ≤ m ≤ M
}

(6)

where C∗
m is the clustering results and KS−m denotes the other

reconfiguration strategies, except cluster m.
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Since the clustering model is based on the DNR problem,
it may inevitably need to calculate the PF of the system. As
every single branch has individual power loss and switching
actions may also cause certain loss. The switching action means
changing the switches’ state when conducting the DNR, i.e., the
open state change to closed state and closed state change to open
state. The switches have a specific life span, changing the state
may reduce their life span [28]. To make the life span cost of
the switch be added to the power losses from PF, the reduction
of switches’ life span is regarded as a kind of power loss in the
DNR problem. The power losses of the entire system can be
given as

ΔP =
∑
i,j∈N

Ploss (i, j) + Pswitch =
∑
i,j∈N

Rij

P 2
fj +Q2

fj

U 2
j

+
∑
k

GCsw (7)

where ij is the branch between bus i and j, the number of buses in
DN is N, Rij and Xij are the resistance and reactance of branch
ij, Pfj and Qfj is the active and reactive PF out of the bus j, and
can be calculated based on the nodal load. Uj is the voltage at
the bus j and G is the number of switching actions. Csw is the
power loss from one action of each switch.

The reconfiguration problem is formulated as a function of the
number of switching operations and bus voltage. The constraints
of the DNR problem consist of the power line transmission
capacity, bus voltage limit, power balance, and radial structure
of DN [5], which can be expressed as follows:

min f (KS, G, Uj) =
∑
i,j∈N

kijRij

P 2
fj +Q2

fj

U 2
j

+
∑
k

GCsw

(8)

s.t. P−
cap < Pij < P+

cap (9)

Uj_min ≤ Uj ≤ Uj_max (10)

ΔP +
∑
i∈N

(PLi) =
∑
i∈N

PGi (11)

∑
i,j∈N

kij = N − 1 (12)

αij + αji = kij (13)∑
j/∈NSub

αij = 1 (14)

∑
j∈NSub

αij = 0 (15)

where kij is the state of the switch in the line i−j (if the state
is open, kij = 0, otherwise, kij = 1), KS is the set of kij ,
P−
cap and P+

cap are the lower and upper bound of power line
transmission capacity. Pij is the transmission power of power
line i-j. Uj_min, Uj_max are the lower and upper bound of nodal
voltage. PLi and PGi are the load power and generator power,
respectively. αij is a binary variable indicating if the bus j is the

parent of the bus i, andNSub is the set of substation buses. Equa-
tions (9)–(11) are, respectively, the constraints of the power line
transmission capacity, nodal voltage limit, and power balance.
Equations (12)–(15) are the radial structure constraints: (12)
shows the network topology needs to be a tree, (13) guarantees
that only one of two buses can be the parent bus of the other
one for a connected branch, and (14) indicates that each bus
can have at most one parent bus. Equation (15) shows that the
starting bus cannot be the parent bus for a branch connected to the
substation bus.

DNR is a complex combinatorial optimization problem be-
cause of the multiple DN loops. Based on graph theory, the
global optimal solution of the DNR problem can be solved
by HSA with some improvement [36], and the harmony ma-
trix (HM) is updated to an initial HM and surplus HM with
both HMs satisfying the radial topology structure of the DN.
The network topology can then be obtained from the state of
switches.

The existence of the D > 2 buses results in power losses
in the reduced network deviating from the original network
in terms of series branches. Although the DN is regulated to
operate in the radial structure, the DN is designed in the form
of a closed-loop to improve operational flexibility and power
supply reliability. Moreover, the tie switch is used to connect
two different series branches and keep open in the initial state
of the network. Therefore, the tie switch and the sectionaliz-
ing switch corresponding to the D > 2 bus in a loop are on
different series branches. For example, in the loop l1 of Fig.
2(b), the tie switch 4′–6′ and the sectionalizing switch 3′–4′

corresponding to the bus 4′ are on series branches 1′–6′ and
1′–4′, respectively. The change of power loss in a series branch
where the D > 2 bus is located may lead to a misjudgment of
the state of sectionalizing switches and tie switches. Therefore,
the correction method shown in (16) is proposed to achieve the
optimal results. The correction method [i.e., (16)] means com-
paring the power losses under, respectively, open sectionalizing
switches and tie switches scenarios, then selecting the minimum
one as the optimal strategy. The optimization problem can be
expressed as

min
(
f
(
KB

Sl, G
∗, U ∗

j

)
, f

(
KT

Sl, G
∗, U ∗

j

))
(16)

where KB
Sl is the sectionalizing switch in loop l and KT

Sl is the
tie switch in loop l.

The optimal reconfiguration strategy K∗
S for the clustering

model can be acquired by solving the problem (8)–(15) with
the correction method, and the optimal strategy satisfies the
following inequation:

f
(
K∗

S, G
∗, U ∗

j

) ≤ f (KS, G, Uj) . (17)

V. RECONFIGURATION DECISION-MAKING WITH DATA-BASED

LEARNING AND RECOVERY PROCESS

A. Data-Driven Learning Method for
Reconfiguration Database

Based on the goal-oriented clustering results, the load distri-
bution with the same optimal reconfiguration strategies K∗

Sm
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is clustered into one cluster and marked with one kind of class
label for data-driven learning. The class label can be expressed
as

Lm = {lm|K∗
1 = K∗

2 = . . . = K∗
Sm, 1 ≤ m ≤ M} (18)

where Lm is the class label, and K∗
1 and K∗

2 are the optimal
reconfiguration strategy of different load distributions.

According to the class label and corresponding reconfigura-
tion strategy, the data-driven learning method is used to obtain
the mapping mechanism between load distribution and optimal
reconfiguration strategies. The LSTM model has advantages in
handling problems that have long-term dependencies (e.g., the
load of the current hour is related to the load of the next hour).
LSTM network is composed of an input layer, a hidden layer, and
an output layer. In the hidden layer, the forget gate mechanism
can help the LSTM network process the series input data. A
memory cell is used in the blocks in the hidden layer, which can
build the relationship between the current node and the previous
node, the coupled input information can be transmitted and kept
through the memory cell [37]. Therefore, the LSTM network is
used to build the mapping mechanism for the reconfiguration
problem.

The features of the LSTM network are composed of the
optimal reconfiguration results, including two parts: network
structure and nodal power injections. This information forms a
feature matrix, which is expressed as

Pi ∈ N × 2 (19)

where N is the number of buses, 2 refers to the active power and
reactive power of each bus calculated by the reconfiguration
model. Both buses and their power are corresponding to their
network label. Since each element in the matrix corresponds to
the network of the distribution system, each feature affects the
classification accuracy of reconfiguration strategy clustering.

The output of the LSTM network is the labeling of the
clustering results. The features are used as the input and the
corresponding class label is used as the output of the LSTM
network. The three gates (forget gate, input gate, and output
gate) in an LSTM cell helps to form the relation between input
and output, as well as minimize the learning error [37]:

J =
1
a

a∑
i = 1

M∑
j = 1

y
(i)
j logŷ

(i)
j (20)

where a is the number of samples, y(i)j and ŷ
(i)
j are the true and

predicted class label, respectively.
Therefore, through taking load distribution as the input and the

corresponding class label as the output, the mapping mechanism
between the load distribution and the resultant reconfiguration
strategies is achieved. This mapping mechanism can conve-
niently generate reconfiguration strategies based on the load
distribution given to the LSTM network.

The load distribution presents a certain similarity because of
the inertia of the users’ energy consumption behavior. Besides,
the number of switches is reduced due to the model reduction.
Considering the above two factors, there may be fewer cate-
gories of optimal reconfiguration strategies and LSTM’s outputs.

Therefore, a small number of samples can obtain a high accuracy
when training the LSTM network.

B. Reconfiguration Strategy With Network Recovery

To obtain the optimal reconfiguration strategy of the original
network, a recovery process should be conducted based on the
reduced network and its optimal switch strategy. The details of
the network recovery process are presented as follows:

If the switches in the equivalent branch are open, the branch
i−j should be separated into two branches: branches i-i′ and i′-j.
The conjunction point of this branch can be determined by the
following principles:

1) if there are 2k−1 sectionalizing switches in the original
network corresponding to the equivalent branch i−j, then
the branch i-i′ should have k−1 sectionalizing switches,
and the branch i′-j should have k sectionalizing switches;

2) if there are 2k sectionalizing switches in the original
network corresponding to the equivalent branch i−j, then
branch i-i′ should have k sectionalizing switches, and the
branch i′-j should have k sectionalizing switches.

The parameters of the branches i-i′, i′-j, and the real/reactive
power of bus i′ can be determined by Theorem 1. Through this
recovery process, the reduced network is recovered layer by
layer until the stop criterion is satisfied, where the stop criterion
means the number of switches with an undetermined state is no
more than N0 in each loop. Besides, N0 is flexibly determined
by the number of samples and the current recovery network.

The network recovery takes a hierarchical approach. This
process is expressed in Fig. 4. Ko is the optimal reconfiguration
strategy of each layer. kt, t ∈ {1, 2, 3} is the possible state
combination of every switch in the loop lt. kt is the switch
whose state has been determined in the loop lt. The layered
process is determined by the switches′ states under the optimal
reconfiguration strategies of the reduced network. In Fig. 4, the
reconfiguration strategies of the reduced network are K021 and
K022, where the network structure is different from the original
network to a great extent. To recover the original network and
according to the reduced network and the strategy K022, the
branches 3′–4′ and 2′–8′ in the network K022 are separated to
the branches 3′-a2, a2-4′ and 2′-a3, a3-8′, respectively. There are
three different reconfiguration strategies of the reduced network
K022: K031, K032, and K033. Each network needs to be
continuously recovered. The branch 2′-a3 is separated into the
branches 2′-a31 and a31-a3 in K031. Then, if the number of
switch whose states have not been decided in the current network
is not more than N0, the recovery process is terminated.

If the last layer is still not the original network, there are at
most N0 switches that need to be judged in each loop, and the
solution space is greatly reduced compared with the original
network. Therefore, the reconfiguration model of (8)–(15) is
modified to a simple combinatorial selection problem, and can
be solved by a simple enumeration method in a small solution
space, which is expressed as follows:

min{A,B . . . |A = f ( k1m) , B = f ( k2m) , . . .} (21)

s.t. Eqs. (9 − 11) (22)
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Fig. 4. Layering recovery process of reconfiguration.

where k1m and k2m are the switches set in the cluster m of the
last layer.

For the DNR problem in a specific network, through the
hierarchical recovery process, the solution space is greatly re-
duced. Therefore, the computation time is vastly shortened, and
computation resources are saved. It is noted that the complexity
of the proposed method is depended on the number of loops (i.e.,
tie switch) and sectionalizing switch in the network.

In the HDNR framework, through building the mathematical
model for the model-driven method, the samples can be gen-
erated and the learning network for the data-driven method is
built, then the DNR is implemented in a less solution space, fast
realization, and better results. The LSTM network used in the
solving process serves as the data-driven method and is imple-
mented with the designed hierarchically recovery process, which
is the basis for the foundation of reconfiguration databases. The
databases then help the proposed HDNR framework realize the
fast reconfiguration. A pseudocode of the HDNR framework for
DNR is as follows.

HDNR framework.
1. Input network structure and load information.
2. Reduce the network based on (1) and (2).
3. Cluster the sample with the goal of the same optimal

reconfiguration strategy in (5)–(17).
4. Build the database based on the LSTM network.
5. Recovery process
While num> N0 (num is the number of switch
undetermined in current recovery network)

do
Step 3 for a recovered network.
Step 4 for a recovered network.
Build the recovered network based on the results of
Step 4.

End while
6. Select the optimal reconfiguration strategy in

(21)–(22).

Fig. 5. Reduction process from 33-bus network to 14-bus network.

VI. CASE STUDY

A. Data

The IEEE 33-bus network is used as the network topology
in this article to verify the proposed model, which includes 59
users, and the data of the system is taken from an industrial
park in Henan Province, China with 665 days. Fig. 5(a) shows
the topology of the system that is composed of five loops. In
the network, each bus is connected to a distribution transformer
that connects n users, which consists of residents, commercial
buildings, and factories. Each user is equipped with a user energy
management system to collect data, store data, and conduct
calculations. The DNR is performed by the utility grid according
to the existing environment of the power system. Besides, the
proposed model is also performed in the IEEE 119-bus and IEEE
123-bus test networks.

B. Results of Network Reduction

The IEEE 33-bus network can be reduced to a 14-bus
network based on the model reduction. Fig. 5(b) shows the
14-bus network, where the red branch is an equivalent branch of
multiple branches in the original network; for example, branch
1′–9′ comes from the three branches (1′-a, a-b, b-9′). Moreover,
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TABLE I
RECONFIGURATION STRATEGY OF THE FIRST LAYER

Fig. 6. Recovery process from 14-bus network to 18-bus network.

three buses (a, b, 9′) are merged into one equivalent bus 9′. The
impedance of each branch and the complex power of each bus are
also shown in Fig. 5(b). According to (1) and (2), the impedance
of equivalent branch 1′–9′ is 2.07 + 2.0i , and the complex power
of the equivalent bus 9′ is 328.92 + 94.29i. The optimization
will focus on the state of the equivalent switch. It is clear in
Fig. 5(b) that the number of buses decreases after the model
is reduced, and the loop and structure are unchanged between
the original network and the reduced network. Therefore, the
solution space is reduced and optimal reconfiguration strategies
can be obtained with fewer resources and less computation time.

C. Results of the IEEE 33-Bus Network

The database of the optimal reconfiguration strategy is built by
the data-driven method based on the clustering model. Accord-
ing to the clustering results of the reduced network, the optimal
reconfiguration strategies of potentially different load distribu-
tions can be separated into two clusters. The open switches of
each loop are expressed in Table I.

According to the network recovery process, the two clusters
can be recovered to a 19-bus network and an 18-bus network.
An 18-bus network is displayed in Fig. 6, which is obtained by,
respectively, adding the buses (a21, a22, a23, a24) in the branches
(5′–6′, 6′–7′, 7′–8′, 3′–12′). Besides, the 19-bus network is
obtained by adding the buses (b1, b2, b3, b4, b5) in the branches
(3′–4′, 5′–6′, 6′–7′, 7′–8′, 3′–12′), respectively. The goal-oriented
clustering model is used in two recovery networks to obtain the
clusters, and the data-based LSTM learning network is used
to build the database with the mapping mechanism, in which
the database is for the second layer. Supposed 80% samples
are the training samples, and the other 20% samples are the
testing samples to test the training LSTM network. The LSTM
learning is conducted in the MATLAB toolbox with 100%

TABLE II
RECONFIGURATION STRATEGY OF THE SECOND LAYER

Fig. 7. Changing process of network.

training accuracy. The reconfiguration strategy cluster of the
19-bus network and the 18-bus network are presented in Table II.

From Table II, it can be seen that in the second layer, there
are identical reconfiguration strategies from different clusters
of the first layer, i.e., the reconfiguration strategy (4′ − 9′, 5′ −
b2, b3 − 7′, b4 − 8′, b5 − 12′) is in both the 19-bus and 18-bus
networks. This is a coupling phenomenon, which results from
the layered recovery process. However, this coupling will not
affect the accuracy of the reconfiguration strategy. For many
paths from the reduced network to the original network during
the recovery process, only one path needs to be in place.

From Fig. 6, the difference in the number of branches (i.e.,
switches) in each loop between the second layer network and
the original network is not more than 2 (N0 = 2 in this case).
Therefore, the layered process ends, and the possible switch
combinations after the layered process can be obtained. Then,
the optimal reconfiguration strategy of the original network can
be achieved by a simple selection process. The entire process is
presented in Fig. 7.

According to the model reduction and recovery process,
the optimal reconfiguration strategy of the first layer
and the second layer can be expressed as {4′ − 9′,
5′ − 6′, 6′ − 7′, 7′ − 8′, 3′ − 12′} and {4′ − 9′, 5′ − b2, b3 − 7′,
7′ − b4, b5 − 12′} for load distribution, as shown in Fig. 8.
There are four kinds of switch combinations after the
layered process and corresponding minimum power losses
can be calculated by the model (21) and (22), which
are shown in Table III. Therefore, the optimal recon-
figuration strategy of the original network is {4′ − 9′,
5′ − b2, c2 − 7′, 7′ − b4, c3 − 12′} and the power loss is
81.2806 kW.
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Fig. 8. Specific load distribution.

TABLE III
RECONFIGURATION STRATEGY AND POWER LOSSES

Fig. 9. Changing process of network.

D. Results of the IEEE 119-Bus Network

The IEEE 119-bus network [18] is used to show the effec-
tiveness of the proposed HDNR framework in a large-scale
network. It is noted that the index of switch combination is the
same as the standard network that shows in the reference. For
the IEEE 119-bus network, according to the model reduction,
the reduced network is the 43-bus network. The database of
the optimal reconfiguration strategy for the reduced network is
built by the data-driven method, then conduct the hierarchical
recovery process. As Fig. 9 shows, the first layer includes two
major recovery networks: 51-bus network and 52-bus network.
The second layer includes the 57-bus network and the 58-bus
network (58-bus-1) corresponding to the 51-bus network in the
first layer, and another 58-bus network (58-bus-2) corresponding
to a 52-bus network in the first layer. The reconfiguration strategy
clusters of these reduced networks are shown in Table IV. After
two layers recovery, the remaining number of switch combi-
nations in the 57-bus and 58-bus-2 network is 576, and that
in 58-bus-1 is 1152. The optimal reconfiguration strategy of

TABLE IV
RECONFIGURATION STRATEGY OF REDUCED NETWORK

TABLE V
RECONFIGURATION STRATEGY OF REDUCED NETWORK FROM 123-BUS

the original network can be obtained by directly judging these
switch combinations based on (21) and (22).

E. Results of the IEEE 123-Bus Network

For the IEEE 123-bus network [38], although there are 127
branches in the network, only 6 branches equip the switches,
including 4 sectionalizing switches and 2 tie switches. There-
fore, the network can be regarded as a 6-bus network through
aggregating the nodal load next to the branch without switches
to the bus next to the branch with switches. Then, the 5-bus
network is obtained by model reduction. Table V shows the re-
configuration strategy of the 5-bus network. The reconfiguration
database is built by the data-driven method. Because of the fewer
switches, the original network can be directly obtained through
recovering the 5-bus network. Then, the optimal reconfiguration
strategy can be obtained through the (21) and (22).

F. Comparison Between the HDNR Framework and
Different Methods

To show the effectiveness of the proposed HDNR framework
in terms of computation time and optimal results, the comparison
is conducted in the IEEE 33-bus, IEEE 119-bus, and IEEE
123-bus network. For the IEEE 33-bus network, the comparison
methods include HSA, GA [19], SOE [15], and PSO [14], and the
comparison results are shown in Table VI. Compared to HDNR,
HSA, GA, PSO, and SOE are similar model-driven methods.
In terms of power loss, the HDNR framework is the same as
the HSA because of the similar calculation process, they both
have the lowest value of 81.28 kW compared to GA, PSO, and
SOE. The results of HDNR and HSA also show the model reduc-
tion and hierarchical recovery process proposed in this article
will not affect the optimality of the reconfiguration results. In
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TABLE VI
COMPARISON RESULTS OF THE IEEE 33-BUS NETWORK

TABLE VII
COMPARISON RESULTS OF THE IEEE 119-BUS NETWORK

TABLE VIII
COMPARISON RESULTS OF THE IEE 123-BUS NETWORK

terms of computation time, the HDNR is 0.09 s, which is far
below the HSA, GA, PSO, SOE, and provides the possibility
of real-time calculation. From the computation time and power
losses, methods with the advantages of computation time may
compromise computational accuracy, similar to that of SOE.
However, they work together hierarchically in the proposed
HDNR framework because the data-driven method is introduced
to the reconfiguration model, getting the best performance in
terms of both power loss and computation time.

For the IEEE 119-bus network, the comparison results are
shown in Table VII with the methods: HSA, GA, and SOE.
From Table VII, HSA, SOE, and the HDNR framework can
get the same optimal reconfiguration strategy with the same
minimum power loss, which is better than GA. Meanwhile, the
computation time of the HDNR framework is the shortest, which
is almost four times faster than the SOE. It is noted that the
computation time of the HDNR framework is increased when
compared with the IEEE 33-bus network, the reason is that the
undetermined switch N0 increases with the number of switches.

For the IEEE 123-bus network, the comparison is also con-
ducted with the same methods of the IEEE 119-bus network.
Table VIII shows the comparison results. The HDNR, HSA, and
GA have the same optimal reconfiguration strategy and acquire
the same minimum power loss, which is better than the SOE. The

TABLE IX
COMPUTATION TIME OF EACH DATABASE

computation time of HDNR framework is also largely shorter
than the other three methods.

Based on the comparison of the IEEE 33-bus, IEEE 119-bus,
and IEEE 123-bus network, the proposed HDNR framework is
efficient in both small-scale and large-scale networks with less
online computation time and minimum power loss.

G. Analysis of Computation Cost and
Practical Feasibility

The HDNR framework is implemented by using a computer
with Intel Core i5-8250 CPU 1.60 GHz, 16 G memory, and
MATLAB 2018a is used as the testing environment for the
algorithm. The time for building each offline database is shown
in Table IX. The time for building the database will increase with
the bus number and sample number, where the bus number is the
main influence factor (the time of building database in the IEEE
119-bus network is much longer than that in the IEEE 33-bus
network). Although a certain time and computational resources
are required to build the database, it is only recalculated when the
network structure is changed, i.e., the scale of the system, which
does not happen frequently when the load reaches saturation with
the DN development. In practical applications, the database is
built based on a long-term process with the offline operation,
which only occupies the offline computational resources and
has no effect on the online computation of obtaining optimal
strategy. Therefore, these computation time and resources can
be acceptable for the DNR problem. Besides, to further save the
computational resources, the data samples can be dynamically
added to the database. Considering that the database is built
layer by layer, the database in the same layer can be built in a
distributed way to save computation time. Moreover, the compu-
tation time can be further reduced when taking the solution tool
with high performance (e.g., server) in the practical application.

In terms of the online computation time, it remains in the
second level, as the results of the IEEE 119-bus network shown
in Table VII. The online computation time is affected by the
trained LSTM network and the undetermined switch N0. The
large-scale network may increase the input feature of the LSTM
network, while the influence is slight. There will not be too many
switch combinations because the number can be controlled by
the hierarchical recovery process, and the calculation is fast since
it only requires plugging the number in the formula.

For the IEEE 33-bus network, the accuracy of the LSTM
network in the first layer is 95%, and the accuracy of the LSTM

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 17,2024 at 19:04:05 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: HYBRID DATA-DRIVEN AND MODEL-BASED DISTRIBUTION NETWORK RECONFIGURATION WITH LOSSLESS MODEL REDUCTION 2953

Fig. 10. Accuracy vs. number of samples.

networks corresponding to 18-bus and 19-bus networks in the
second layer is 85% and 86%. For the IEEE 119-bus network,
the accuracy of the LSTM network corresponding to 43-bus,
and 51-bus networks are respective 96.36% and 91.67%. For the
5-bus network got by the IEEE 123-bus network, the accuracy is
93.47%. Because the samples should be separated into different
categories as the hierarchical process occurs, reducing both the
number of samples and the accuracy in the posterior layers. Be-
sides, the learning accuracy of the reduced framework is higher
than the original network, take the IEEE 33-bus network for
example, the correlation between the accuracy and the increment
of sample numbers is shown in Fig. 10. The reason is that the
reduced scenario can reduce the solution space and the number
of clusters. The accuracy will also increase with the increment
of sample numbers in both the reduced and original scenarios,
in which the data samples can be dynamically added to the
framework in practical application.

VII. CONCLUSION

In this article, an HDNR framework was proposed, where
the model reduction and goal-oriented clustering model were
provided to obtain the data for a data-driven method. Further-
more, the LSTM network was suggested to learn the mapping
mechanism for the reconfiguration strategy. The case study was
conducted in the IEEE 33-bus, IEEE 119-bus, and IEEE 123-bus
network. The number of buses in the DN was reduced by the
model reduction, and the solution space was reduced corre-
spondingly. The hierarchical database for the reduced networks
was built by combining the network recovery process and the
LSTM neural network. When compared with HSA, GA, PSO,
and SOE, the HDNR method consumed less computation time
and maintained minimum power losses in both small-scale and
large-scale networks. Future studies will relate to new network
reduction methods that simplify the network processing and
explore the method to uncouple the DN for the distributed
reconfiguration.
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