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Abstract—Efficient management of distributed energy re-
sources often requires a tremendous amount of data to model
component constraints and consumer behaviors. However, in
many practical scenarios, collecting high-resolution demand data
is significant costly, which jeopardizes the efficient utilization of
demand-side resources. This paper proposes a novel learning
framework to quantify demand-side flexibility envelope under
data scarcity. We construct a long-short-term memory network
to capture the relationship between consumers’ load consumption
behavior and demand flexibility envelope. The network only uses
low-resolution load data to predict consumers’ personalized flexi-
bility envelope and able to extrapolate across various stakeholders
and conditions. We provide a flexibility envelope generation
algorithm to generate the training label and expedites the training
process with limited high-resolution historical load data and
environmental data. Simulations using Pecan Street consumer
data demonstrate that our method generate effective demand
flexibility envelopes for network training, and the cross-validation
results shows our learning framework accurately predict the
demand flexibility envelope despite data scarcity.

Index Terms—Demand response; data scarcity; quantification;
neural network; flexibility envelope

I. INTRODUCTION

Distributed energy resources (DERs) are the cornerstone of
future power system operations. DERs offer consumers new
options for electricity consumption and provide new market
mechanisms to incentivize consumer engagements such as
demand response (DR) programs enable [1], [2]. One of
the key factors in designing an effective DR programs is
modeling consumers’ demand flexibility, represented by their
upper and lower demand envelope [3], [4]. Non-intrusive
load modeling (NILM), also known as load disaggregation,
offers a convenient and privacy-ensuring approach to quantify
the individual contribution of appliances to the load and to
enable a detailed examination of consumers’ demand pat-
terns [5]. Some NILM research focuses on clustering and
detecting load events, recognizing appliances’ state transition
processes as load signatures, and employing combinatorial
optimization for load event matching [5], [6]. Other NILM
methods utilize machine learning approaches to classify dif-
ferent types of appliances with supervised labels. The temporal
and spatial features can also be captured by deep neural
networks, which is widely used and proven efficient under
the NILM framework. Transfer learning is also employed to
enhance the network’s extrapolation ability between different
appliances [7]. Thus, with data support from NILM, utilities

can potentially model consumers’ demand flexibility based on
detailed demand patterns [8].

However, NILM, while non-intrusive, often relies on high-
resolution load data of minute or sub-minute sampling rate.
While some low-resolution methods (15 minutes) necessi-
tate extensive detailed datasets of historical appliance con-
sumption [9]. These data sets require significant hardware
investments to obtain high-frequency measurements via smart
meters, and to store and process these data through cloud
services. NILM algorithms require substantial data process-
ing [4], leading to high energy consumption and not aligning
with the principles of green computing [10]. Moreover, as
NILM solely provides detailed appliance consumption patterns
without in-depth consideration of human factors, it may fail
to accurately reflect consumers’ flexibility envelopes [11]. In
practice, most DR programs operate on an hourly basis [12]
and calculate demand flexibility using appliances’ rated power
or sending commands asking consumers to turn off certain
appliances [13], [14]. Also, most of the utilities can only
provide smart meter data up-to half-hour resolution, because
they either don’t have meters which can provide high resolu-
tion data, or data below half-hour cannot be disclosed due to
privacy issue.

Therefore, predicting consumers’ flexibility envelopes us-
ing low-resolution (half-hour or hourly-level) data not only
efficiently utilizes existing DR communication and metering
infrastructure, but also reduces the energy consumption and
carbon footprint. Existing research about developing flexibility
envelopes mainly focuses on the building sector, using per-
formance indicators and flexibility functions to quantify the
flexibility envelopes [15]. These model-based methods gener-
ally require specific modeling of each appliance [16]. Some
works also use data-driven methods with detailed appliance
consumption data [8] and historical data-driven quantification
results [4]. Without heavily relying on the data, this paper
designs a novel learning-based framework to quantify demand
side flexibility envelopes under high-resolution data scarcity.
The proposed framework leverages consumers’ historical load
consumption behaviors and enables utilities to rapidly predict
flexibility envelopes using only hourly load measurements,
circumventing the need for high-resolution data. The paper
contributes in the following ways:

1) We propose a flexibility envelope learning framework that
quantifies consumers’ personalized demand flexibility en-



velopes by training a neural network with low-resolution
load data. In this training process, demand flexibility
envelopes serve as training labels, while historical load
data and environmental data act as input features.

2) We develop a flexibility envelope generation algorithm
that rapidly generates training labels and expedites the
training process. This includes a fast load recognition
algorithm to identify specific load patterns from high-
resolution load profiles.

3) We use a real dataset to assess our learning framework,
and the cross-validation results demonstrate the high
accuracy of our envelope prediction outcomes.

The remaining of the paper is organized as follows: Sec-
tion II introduces the flexibility envelope learning framework.
Section III presents the flexibility envelope generation al-
gorithm. Section IV introduce the dataset and computation
results. Section V concludes the paper with a discussion on
future directions.

II. FLEXIBILITY ENVELOPE LEARNING FRAMEWORK

A. Framework Overview

The overall framework is shown in Fig. 1. Our framework
aims to predict demand flexibility envelope directly using
hourly resolution data. Based on our discussions with three
different utilities and two meter vendors across the US, it
is a reasonable assumption that utilities have access to high-
resolution demand measurement of limited consumers to train
the prediction model. Hence, the trained model can be directly
applied to a large number of consumers without prior high-
resolution measurements. During the network training process,
we use high-resolution data (minutes level) to generate the
training label. We provide a fast load recognition method by
separating consumers’ load into three types: heating, venti-
lation, and air conditioning (HVAC)-driven load, behavioral-
driven load, and base load, and we recognize each type’s
pattern separately. Among them, HVAC- and behavior-driven
load are changeable and can provide flexibility. Based on
that, we propose a flexibility envelope generation algorithm
to calculate high-resolution demand flexibility envelopes and
convert it to a low-resolution envelope as the training label.

B. Learning Model

Considering the time series characteristics of consumers’
load and envelope, we opt for a long-short term memory
(LSTM) network, which can capture the inherent temporal
relationships in time series data. Since utility companies
typically know consumers’ hourly load consumption patterns
and events that require demand side flexibility, such as demand
response, to generate hourly signals, we build the learning
model based on low-resolution load profiles:

Y = f(X) (1)
X = [l,T ] (2)

Y = [E+
h , E−

h ] (3)

Where Y ,X are the output labels and input features; l is
a matrix with hourly load consumption of historical days and

Fig. 1. Flexibility envelope learning framework.

target days; T is the target days’ outdoor temperature; E+
h , E−

h

are the upper and lower flexibility range.
To predict the demand flexibility envelope on target days,

we use historical load profiles during several months and the
load profiles of the specific target day to learn consumers’
consumption behaviors and identify the potential for demand
adjustments. Moreover, historical and target day outdoor tem-
peratures play a dual role. The former assists in understanding
the relationship between a user’s consumption behavior and
outdoor temperatures, while the latter contributes to determin-
ing the load profiles for the target day. It is noted that we only
focus on predicting flexibility envelopes for target days, and
the load profiles for these days can be obtained from various
existing load forecasting methods.

We calculate the upper and lower envelope by adding or
subtracting a flexibility range from the original load profiles.
This range primarily comes from the adjustable portion of
consumers’ load. Also, the accuracy of the entire envelope
prediction is affected by the precision of the original load
prediction. Thus, here we predict the flexibility range E+

h , E−
h ,

rather than the entire envelope, i.e., the difference between
the upper/lower envelope and the original load. We provide
a flexibility envelope generation algorithm to calculate the
flexibility range based on historical days’ load profiles, serving
as the training label, which we detail in the next Section.

With consumers’ flexibility ranges determined, we merge
consumers’ original load profiles on the target days with the
upper flexibility range to calculate the entire upper envelope.
This approach considers the presently active appliances, noting
that appliances already in operation cannot contribute to the
current upper bound. For the entire lower envelope, we add
the lower flexibility envelope to the base load to obtain the
minimum fixed load.

The LSTM network learns the relationship between his-
torical load and flexible envelope by recognizing the load
patterns and flexibility range from the input features. Once we
learn enough consumers’ behavior from the labels calculated
using high-resolution load data, the network can extrapolate



to other consumers with only low-resolution load data. The
patterns and trends of consumers’ load profiles are similar,
which support the network extrapolation. However, note that
social demographics significantly influence consumers’ be-
havior. In this context, we assume consumers with similar
load profiles will provide similar load flexibility. With more
social demographics data, we can include this information
in the network training process to better capture consumers’
individual flexibility. Also, the trained network can be updated
with more recent load profiles by periodically training new
networks or using the transfer learning method.

III. FLEXIBILITY ENVELOPE GENERATION ALGORITHM

A key component in our training process is to generate
flexibility envelopes from historical high-resolution demand
measurements, which are used as training labels. To this end,
we introduce a method to fast recognize load patterns and
develop an algorithm to calculate the demand side flexibility
envelope as the training label of the learning model.

A. Fast Load Recognition

We separate load into three types as shown in Fig. 2. Among
them, an HVAC-driven load is a special large adjustable load,
usually ranging from 1-4kW, regularly appearing throughout
the day. HVAC operation is influenced by the outside tem-
perature and consumers’ indoor temperature set points. When
indoor temperatures reach the set points, the HVAC will turn
off; otherwise, it remains operational. Thus, rated power and
frequency are commonly used to express the HVAC-driven
load.

Fig. 2. Load patterns from high-resolution load profiles.

Behavior-driven load is determined by consumers’ uncer-
tain behavior, which is irregular with fast variations, such
as hairdryers, washing machines, or cooking appliances. In
general, most behavior-driven loads can be adjusted to provide
flexibility. On the other hand, the base load encompasses the
standby energy consumption of appliances, characterized by
its stability and relatively small magnitude. This load does
not offer flexibility during incentive or mandatory events.
Consequently, we employ a minimal smoothing method to
filter the base load:

lbase,t′ = min(lt, ..., lt+tw), ∀t′ ∈ [t, t+ tw] (4)

where lt is the entire load consumption at time slot t; lbase,t′
is the base load in time slot t′, tw is the window size in the
smoothing method.

Learned from the specific patterns exhibited by the HVAC-
driven load, which typically manifests as a spike characterized
by a substantial increase over 2-4 minutes, followed by a
sustained plateau during subsequent brief intervals dictated by
the HVAC frequency, we first provide the following criteria to
recognize HVAC rated power lHVAC.

lt+1 − lt ≥ τ1 (5)
min(lt+2, lt+3, lt+4)− lt ≥ τ2 (6)
|min(lt+5, ..., lt+ts)−max(lt, ..., lt+4)| ≤ τ3 (7)

where ts is the time span for the HVAC spike, τ1, τ2, τ3 are
the thresholds used to judge the spike in consumers’ demand,
which is determined by the demand profiles.

Equation (5) recognizes the beginning of a spike, (6) judges
the increase stage of a spike, and (7) judge if the spike stays
for a short time, with the time span determined by the HVAC
frequency. However, the behavior-driven load can also exhibit
similar patterns due to its highly random and personal nature.
Since the behavior-driven load is irregular, we use a histogram
to calculate the frequency of each spike appearing and choose
the most frequent spike value as the HVAC rated power. Then
we count the frequency of the HVAC-driven load, expressed
as the percentage of HVAC on-time during each hour, and use
linear regression to establish its relationship with the outside
temperature:

fHVAC,T = EfHVAC∈T [fHVAC] (8)
fHVAC,T = a ∗ T + b (9)

where a, b are the linear regression parameters; T is the
outdoor temperature; fHVAC is the HVAC frequency over time,
and fHVAC,T is the average HVAC frequency corresponding
to outdoor temperature.

After obtaining the HVAC-driven load and base load, we
subtract them from the consumer’s entire load to obtain the
behavior-driven load.

B. Flexibility Envelope Generation

Based on the recognized HVAC-driven load, behavior-
driven load, and base load patterns, we can formulate con-
sumers’ demand flexibility envelope. This flexibility is ex-
pressed by the upper and lower envelope of consumers’
demand, indicating the demand change capacity, contributed
by the HVAC-driven load and behavior-driven load.

Regarding the HVAC-driven load, consumers can adjust
the indoor temperature set point to adjust the on/off time
periods to provide demand flexibility. For example, in cooling
zone, during the on time periods, consumers can increase
the indoor temperature set point to reduce load consumption,
which contributes to the lower envelope. Conversely, during
the off time periods, consumers can reduce the set point to
open the HVAC and consume energy, providing the upper
envelope. The detailed formulation is expressed as follows:

E+
HVAC,t = st ∗ lHVAC, ∀t ∈ toff (10)

E−
HVAC,t = (1− st) ∗ lHVAC, ∀t ∈ ton (11)



where st is the allowed set point change by consumers in
time slots t, for convenience, expressed as a percentage of
consumers’ energy change; toff , ton are the HVAC off and open
time slots, respectively; E+

HVAC,t, E
−
HVAC,t are the upper and

lower envelope contributed by the HVAC-driven load.
The behavior-driven load consists of many small appliances

with uncertain consumer behaviors, making it challenging to
recognize granular load patterns under data limitation. To
address this issue, we provide a statistical method based on
historical load profiles to quantify the contribution of behavior-
driven load in the upper and lower envelope. We obtain
historical behavior-driven load values for each minute of each
day using high-resolution load profiles. This allows us to
calculate the occurrence probability of specific behavior-driven
loads. We compute the expected value of historical behavior-
driven load that surpasses the behavior-driven load for target
days. This calculation indicates the likelihood of higher loads
occurring during those specific time slots. Conversely, for the
lower envelope, we calculate the minimum behavior-driven
loads from both historical and target days, which should be
treated as fixed loads as they always exist. The equation is
then expressed as follows:

E+
B,t = E[lB,t − lBt,t], E−

B,t = min([lB,t, lBt,t]), (12)

where lB,t is the behavior-driven load matrix in historical days
at minute t; lBt,t is the behavior-driven load vector in the target
days; [∗] means the concatenation of matrix.

We then calculate the flexibility range determined by the
HVAC- and behavior-driven loads across historical and target
days. We first convert the high-resolution load profiles into
a low-resolution representation. The HVAC-driven load is
calculated by the hourly outdoor temperature and rated power
because the variations in indoor and outdoor temperature
differences affect the HVAC open time in each time slot, which
can be expressed as follows:

lV,h = lHVAC ∗ (a ∗ Th + b) (13)

where lV,h is the HVAC-driven load at hour h.
The hourly flexibility range, serving as the training label, is

expressed as follows:

E+
h = sh ∗ (lHVAC − lV,h) + E[lB,h − lBt,h] (14)

E−
h = (1− sh) ∗ lV,h +min([l′B,h, lBt,h]) (15)

IV. CASE STUDY

A. Datasets

In the case study, we used a dataset from Pecan Street. This
dataset contains one year of minute-level load consumption
data for 148 consumers in Texas, USA. Additionally, hourly
temperature data for the same area is collected from the
National Solar Radiation Database of the National Renewable
Energy Laboratory (NREL) [17]. To increase the number of
consumers for better network training, we separated the yearly
data into monthly data and assumed that each month represents
a different consumer so that we increased the number of
consumers to 1776. To implement our algorithm on these
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Fig. 3. Load recognition results.

consumers, we specified the following parameters: τ1, τ2, τ3
defined in equation (5), (6), and (7) above as 0.2kW, 1.5kW,
0.4kW,, tw, st, ts defined in equation (4), (10), and (7) above
as 180 minutes, 80%, and 6 minutes, respectively. Note that the
first three threshold parameters and the HVAC spike time span
are recognized from the load profiles, and set point parameters
can be accurately learned if consumers’ set point information
is included.

B. Flexibility Envelope Generation Results

We first demonstrate the effectiveness of our load recogni-
tion algorithm used to generate the learning training label. Fig.
3 (a) shows the load recognition results given the original high-
resolution load profiles. The filtered load effectively excludes
the HVAC-driven load, as every regular spike is recognized
and reduced from the original load. However, due to the
possibility of overlap between behavior-driven and HVAC-
driven loads, some loads with HVAC-rated power are also
reduced, even if they don’t exhibit regular patterns in the entire
load profiles. For instance, in time slots 850-900, the HVAC-
driven load patterns are covered by the behavior-driven load.
The relationship between outdoor temperature and HVAC open
time percentage is depicted in Fig. 3 (b), showing a strong
linear relationship with an R2 value of 0.93.

Fig. 4 shows the load flexibility envelope results from the
load recognition results. We first compress the high-resolution
load profiles into a low-resolution level to develop practical
and useful low-resolution envelope. From the envelope, it is
evident that during the original peak time slots, the difference
between the upper envelope and the original load is small,
while the difference between the lower envelope and the
original load is large. This is a reasonable result, as small
loads can be shifted to these peak time slots since consumers
already use many appliances, while larger loads can be shifted
to other time slots. Additionally, the maximum value of the
upper envelope lies within the consumers’ whole rated power,
as it is calculated by the average value of the historical load.
The lower envelope also always keeps a small load range
according to consumers’ load consumption behavior, providing
for the basic energy requirement of consumers.

C. Flexibility Envelope Prediction Results

This section cross-validates the LSTM prediction perfor-
mance for the upper and lower flexibility envelope. We use 29
days of low-resolution load profiles and hourly temperature
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Fig. 5. Upper and lower envelope prediction results.

data from the 29th day as the input, while the 29th day’s
flexible upper and lower envelope served as the output to train
the LSTM network. The network is constructed with 30 input
features and 24 time steps. It includes a sequence input layer,
an LSTM layer, a fully connected layer, and a regression layer.
We set the number of neurons to 150 and the minimal batch
size to 64. We chose Adam as the gradient-based optimizer
and use MATLAB 2022b to build the network. The algorithm
is implemented on a MacBookPro with an Apple M2 chip, 16
GB memory, and the training time is about 20s.

Consumers from the dataset are divided into 70%, 10%,
and 20% for training, validation, and testing, respectively.
Fig. 5 (a) shows the training process of the LSTM model,
demonstrating good convergence and accuracy. In addition to
using the built-in validation of the LSTM toolbox to enable
early stopping, we also validate the network using k-fold cross-
validation with k = 5, the validation RMSE reaches 0.22, the
MAE is 0.17, and the loss is 0.07. The envelope prediction
results in the test set are shown in Fig. 5 (b), highlighting the
model’s ability to accurately capture the correlation between
demand flexibility and historical load consumption, even with
limited data (low-resolution data). Although minor fluctuations
are observed, demand side flexibility envelopes are generally
used after clustering consumers to provide grid services or
join the market to make profits. These fluctuations can be
offset during consumer clustering, providing stakeholders with
accurate demand side flexibility envelope information.

V. CONCLUSION

This paper proposes a novel learning framework to quantify
demand side flexibility with limited data, applicable to various
conditions that require consumers’ demand adjustments, e.g.,
DR, resilience enhancement, system planning, and market
design. Using high-resolution data from Pecan Street, we

recognize the patterns of HVAC-driven load, behavior-driven
load, and base load, and use them to generate consumers’
demand flexibility envelope. The envelope aligns reasonably
with historical consumption behaviors and demand shift possi-
bilities. Furthermore, the flexibility envelope prediction results
demonstrate the effectiveness of our learning framework in
recognizing the envelope composition from low-resolution
historical load profiles, achieving a RMSE of 0.22 by cross-
validation. Future research will focus on exploring advanced
machine learning methods to accurately recognize flexibil-
ity, considering more consumers’ behavior and social demo-
graphics, such as comfortable range, indoor temperature set
point, income, and age, to develop better flexibility envelope.
Additionally, as this work assesses how much consumers
can respond, another direction is to investigate consumers’
willingness to respond and the incentives they require for
demand adjustments.
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J. Le Dréau, R. A. Lopes, H. Madsen, J. Salom, G. Henze et al.,
“Ten questions concerning energy flexibility in buildings,” Building and
Environment, vol. 223, p. 109461, 2022.

[16] P. Munankarmi, X. Jin, F. Ding, and C. Zhao, “Quantification of
load flexibility in residential buildings using home energy management
systems,” in 2020 American Control Conference (ACC), 2020, pp. 1311–
1316.

[17] National Renewable Energy Laboratory, “National solar radiation
database.” [Online]. Available: https://nsrdb.nrel.gov/


