Gaming on Coincident Peak Shaving: Equilibrium and Strategic Behavior Liudong Chen Bolun Xu

COLUMBIA ENGINEERING

Earth and Environmental Engineering, Columbia University, New York, NY

Motivation

Coincident peak (CP) charge - charge the customer based on their demand at the system peak time, e.g., 4CP program in Texas [1]: Charge the highest hour in each month between Jun. – Sep., and count in the next year's electricity bill.

Research gap - CP time realizes posterior and depends on all customers' strategies $[2] \rightarrow$ current work focuses on predicting CP time and misses the interaction between customers $[3, 4] \rightarrow$ motivates a game formulation.

Model and formulation Two-agent two-periods CP shaving model

Agent <i>i - game</i>		CP charge at time 1 CI		CP charg	² charge at time 2	
	${\displaystyle \max_{x_{i}}} f_{i}(x_{i},x_{-}%)= {\displaystyle \max_{x_{i}}} f_{i}(x_{i},x_{-})$	$_{i})=-\pi(X_{i,1}+$	$(x_i)I(S_1(x) - S_2(x_i))$	$(x)) - \pi(X_i)$	$_{,2}-x_i)I(S_2(x)+$	
	$I(x) = \begin{cases} 1 \\ 0 \end{cases}$	$x \ge 0$, $x < 0$	System peak time	e determin	ation	
	$S_1(x) = X_{i,1} -$	$+X_{-i,1} + x_i + $	$x_{-i} = S_{1,0} + x_i + x_i$	$x_{-i},$	X - baseline d	
	$S_2(x) = X_{i,2} + X_{-i,2} - x_i - x_{-i} = S_{2,0} - x_i - x_{-i},$			$x_{-i},$	S – system de	
	$x_i \in \mathcal{X}_i = i$	$\mathbb{R}, x_{-i} \in \mathcal{X}_{-i} =$	= R	•	α – shifting pe	

 $x^* \in rg\max_{x_i, x_{-i}} -f_i(x_i, x_{-i}) - f_{-i}(x_i, x_{-i})$ Centralized

Q1: NE exist, unique, stable, and reachable

Theorem – Nash equilibrium (NE) (informal)

The CP game could be concave, quasiconcave/discontinuous, and non-concave/discontinuous, and under the two-agent two-period setting, all types of CP games have unique pure-strategy NE.

 $-S_1(x))-\frac{\alpha_i x_i^2}{\alpha_i x_i^2},$ Shifting penalty

demand,

- rategy
- emand
- penalty parameters

Theorem – stability and convergence (informal)

- The CP game system is global uniform asymptotically stable if all customers' baseline demand is positive (Denoting system) dynamics following the gradient of each agent's payoff function)
- Gradient-based algorithms can converge with an updating rule from the finite difference approximation to the system dynamics (learning rate chosen from backtracking line search)

(a) Two-agent concave game

Figure 1. Convergence performance.

Extending to multi-agent two-period settings, everything still holds except non-concave game NE is not unique, but **CP time agent** (whose baseline peak demand is in the system baseline CP time) and **non-CP time agent** still balances system demand.

Takeaway - Although the game type is variant, the game framework is workable as the equilibrium exists, unique, stable, and reachable.

Q2: Peak shaving and anarchy

Theorem – peak shaving effectiveness (informal)

In all conditions (two-agent, multi-agent, all types of game), the peak shaving effectiveness of the game model is always the same as centralized model.

Takeaway - It is helpful for utilities/operators to apply the game model because they care more about peak shaving.

(c) Multi-agent non-concave game

Theorem – price of anarchy (PoA) with agent equity (informal)

In two-agent settings, PoA (P) increases with inequity among agents, measured by the marginal shifting cost. $\partial[(\alpha_i x_i^*)]$

Theorem – PoA with game type (informal)

Under two-agent settings, fixed system conditions (system) demand, CP charge price) Agent flexibility reduce – α , $X_{i,1}$, $X_{i,2}$ $P(\text{Quasiconcave game}) \ge P(\text{Non-concave game}) \ge P(\text{Concave game}) = 1$

Takeaway - (1) CP shaving mechanisms can consider effectiveness and fairness together – balance agents' marginal shifting cost; (2) Greater agent flexibility amplifies system inefficiency, reflected by the CP game type change; (3) Concave CP game equivalent to the centralized model.

Remark – game type with agent number

With agent numbers increasing, games are more likely to be nonconcave games.

Takeaway - (1) PoA of a small system is more sensitive to the agents' flexibility (game type); (2) PoA of a large system is stable and can diminish flexible agent's influence; (3) Better to have large systems regarding flexible agents, and small systems for inflexible agents.

- [1] K. Ögelman, "Overview of demand response in ercot,"
- 2016.
- Conference on Signal and Information Processing (GlobalSIP). IEEE, 2018, pp. 912–916.
- and local generation," in *Proceedings of the ACM SIGMETRICS*, 2013, pp. 341–342.

References

https://www.ercot.com/files/docs/2023/05/19/ERCOT_Demand_Response__Summary_Spring_2023-update.pdf, 2016. [2] CPower, "4cp management system," https://cpowerenergy.com/wp-content/uploads/2016/12/ERCOT_4CP_Web_Download.pdf,

[3] C. P. Dowling, D. Kirschen, and B. Zhang, "Coincident peak prediction using a feed-forward neural network," in 2018 IEEE Global

[4] Z. Liu, A. Wierman, Y. Chen, B. Razon, and N. Chen, "Data center demand response: Avoiding the coincident peak via workload shifting