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Abstract
Efficient management of distributed energy resources often re-

quires a tremendous amount of data to model component con-

straints and consumer behaviors. However, in many practical

scenarios, collecting high-resolution demand data is significant

costly, which jeopardizes the efficient utilization of demand-side re-

sources. This paper proposes a novel learning framework to quan-

tify demand-side flexibility envelope under data scarcity. We con-

struct a long-short-term memory network to capture the relation-

ship between consumers’ load consumption behavior and demand

flexibility envelope. The network only uses low-resolution load data

to predict consumers’ personalized flexibility envelope and able to

extrapolate across various stakeholders and conditions. We provide

a flexibility envelope generation algorithm to generate the training

label and expedites the training processwith limited high-resolution

historical load data and environmental data. Simulations using

Pecan Street consumer data demonstrate that ourmethod generate

effective demand flexibility envelopes for network training, and the

cross-validation results shows our learning framework accurately

predict the demand flexibility envelope despite data scarcity.

Challenges
Non-intrusive load modeling relies on high-resolution load data,

and its algorithms require substantial data processing, leading to

high energy consumption;

Most DR programs operate on an hourly basis and utilities can

only provide smart meter data up-to quarter-hour resolution, and

most of then cannot be disclosed due to privacy issue.

Proposed Method
We formulate a flexibility envelope learning framework (Fig.

1(a)) that quantifies consumers’ personalized demand flexibility en-

velopes by training a neural network with low-resolution load data:

Y = f (X), X = [l, T ], Y = [E+
h , E−

h ] (1a)

where Y, X are the output labels and input features; l is a matrix

with hourly load consumption of historical days and target days; T

is the target days’ outdoor temperature; E+
h , E−

h are the upper and

lower flexibility range.

We develop a flexibility envelope generation algorithm includes a

fast load recognition algorithm to identify specific load patterns

from high-resolution load profiles.

Base load: lbase,t′ = min(lt, ..., lt+tw
), ∀t′ ∈ [t, t + tw] (2)

(a) Flexibility envelope learning framework (b) Load patterns from high-resolution load profiles

Figure 1. Flexibility envelope quantification method.

HVAC rated power: lHVAC 3 threshold parameters & frequency (3)

HVAC frequency: fHVAC,T linear with outside temperature (4)

Behavior load: lB = l − lbase,t′ − lHVAC (5)

Upper and lower envelop E+
h , E−

h

E+
h = sh ∗ (lHVAC − lV,h) + E[lB,h − lBt,h] (6)

E−
h = (1 − sh) ∗ lV,h + min([l′B,h, lBt,h]) (7)

Data & Flexibility Envelope Generation
and Prediction

We use the raw data from Pecan Street, which includes one year

of minute-level load consumption data for 148 consumers in Texas,

USA. The hourly temperature data is collected from the National

Solar Radiation Database of the NREL.

We then show load recognition results.
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(a) Three load patterns recognition
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(b) HVAC frequency with temperature

Figure 2. Load recognition results.

Given the original high-resolution load profiles, first recognize

the HVAC load, then get the base load and behavior load;

A strong linear relationship between HVAC frequency and

outdoor temperature with an R2 value of 0.93.
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(a) High-resolution original load profiles
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(b) Low-resolution upper and lower envelope

Figure 3. Upper and lower envelope development results.

During the peak time slots, the difference between the upper

envelope and the original load is small, while the difference

between the lower envelope and the original load is large.

Maximum value of the upper envelope lies within the consumers’

whole rated power, and lower envelope always keeps a small load

range, providing for the basic energy requirement of consumers
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(a) Learning process (b) Envelope prediction

Figure 4. Upper and lower envelope prediction results.

Use cross-validates LSTM for prediction. Inputs are 29 days of

low-resolution load profiles and hourly temperature of the 29th

day. Outputs are 29th day’s flexible upper and lower envelope.

Use 5-fold cross-validation, and the validation RMSE reaches

0.22, the MAE is 0.17, and the loss is 0.07. The model accurately

capture the correlation between demand flexibility and historical

load consumption.

Demand side flexibility envelop quantification is essential to DR,

resilience enhancement, system planning, and market design. For

new applications, the training samples can be replaced or scaled.

The data and code used in this study are available from the authors upon reasonable request.
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