Equitable Time-Varying Pricing Tariff Design

-----2023 NAPS

Liudong Chen and Bolun Xu Earth and Environmental Engineering Columbia University

Oct. 17. 2023

What will the future electricity prices look like?

- Background
- Methodology & Solution
- Results

Background

Why this topic?

Background

Constant tariffs

Flat prices over long time

Time of Use (ToU) tariffs

- Predefined non-flat prices over long time
- Generally high, low, normal

Time-varying tariffs

- Hourly different price
- Incentive consumers' flexible response

Challenges

- Reflect wholesale market prices, distribution grid security constraints, and consumers' willingness to respond
 - nt

equity, as DER integration will benefit or burden different consumers

Current research mentions price design should reflect

 S. Burger, I. Schneider, A. Botterud, and I. Pérez-Arriaga, "Fair, equitable, and efficient tariffs in the presence of distributed energy resources," Consumer, Prosumer, Prosumager: How Service Innovations will Disrupt the Utility Business Model, p. 155, 2019
 Cahana, M., Fabra, N., Reguant, M., & Wang, J. (2022). The distributional impacts of realtime pricing.

Equality issues

- Allocatively equity: treat identical customers equally
- Distributionally equity: guarantee vulnerable customer groups pay an acceptable amount for electricity service
- Transitional equity: equity when transition from one tariff to another

Contributions:

- Design effective and equitable tariff
- Capture price-response behavior and embedded social demographics information of consumers

Methodology & Solution

How to formulate the tariff design problem?

Methodology

Equitable and effective tariff design model

Methodology

Identification – ToU tariff

- model price response behavior as a piece-wise linear model
- Only low, medium, and high prices

$$D_{i,t}(\pi_{i,t}) = \begin{cases} D_{i,t,\max}, & \text{if } 0 \le \pi_{i,t} \le \pi_{\text{low}}; \\ a_{i,t,1} * \pi_{i,t} + b_{i,t,1}, & \text{if } \pi_{\text{low}} \le \pi_{i,t} \le \pi_{\text{med}}; \\ a_{i,t,2} * \pi_{i,t} + b_{i,t,2}, & \text{if } \pi_{\text{med}} \le \pi_{i,t} \le \pi_{\text{high}}; \\ D_{i,t,\text{low}}, & \text{if } \pi_{\text{high}} \le \pi_{i,t} \end{cases}$$

Identification – Time-varying tariff

$$\min_{\boldsymbol{\theta}} L = \|G_i(\boldsymbol{p}_i|\boldsymbol{\theta}) - \boldsymbol{D}_i^R\|_2^2$$

- Past price data
- Observed consumer demand in response to the instructed prices

Solution

Solution algorithm

• **ToU Tariff** – The piecewise linear modeling method formulates a mix-integer non-linear optimization model, which can be solved by GUROBI 9.5.2 directly

(13)

• **Time-varying tariff** – The neural network modeling method formulates a non-linear optimization problem with a quadratic objective and neural network structure constraints. We propose a gradient-based solution algorithm with barrier functions to deal with constraints.

The gradient-based method with barrier function

$$\min_{\boldsymbol{p}_{i}(\mu)} F_{0} = \mu f + \sum_{m \in M} \varphi_{m}(C)$$
$$= \mu \Big(\sum_{i \in \mathcal{I}} \Big(\Big[E_{i} - \overline{E} \Big]^{+} \Big)^{2} + \alpha \| \boldsymbol{p}_{i} - \boldsymbol{\lambda} \|_{2}^{2} \Big) \qquad (11)$$
$$+ \sum_{t \in \{\text{PK}\}} \ln(C_{t}) + \ln(C_{1})$$

$$C_t = -\sum_{i \in \mathcal{I}} D_{i,t} + (1 - \beta) * \sum_{i \in \mathcal{I}} D_{0,i,t}, \ \forall t \in \{\text{PeakHours}\}$$
(12)

$$C_1 = -\sum_{i \in \mathcal{I}} oldsymbol{D}_i^T oldsymbol{p}_i + oldsymbol{D}_{0,i}^T oldsymbol{\lambda}$$

$$\begin{split} \frac{\partial F_{0}}{\partial p_{i,t}} &= \frac{\partial F_{0}}{\partial E_{i}} \left(\frac{\partial E_{i}}{\partial D_{i,t}} \frac{\partial D_{i,t}}{\partial p_{i,t}} + \frac{\partial E_{i}}{\partial p_{i,t}} \right) + \sum_{m} \frac{\partial \varphi_{m}}{\partial p_{i,t}} \qquad \frac{\partial D_{t}}{\partial p_{i,t}} &= \frac{\partial D_{t}}{\partial h_{t}^{(L)}} \prod_{l=2}^{L} \left(\frac{\partial h_{t}^{(l)}}{\partial h_{t}^{(l-1)}} + \frac{\partial h_{t}^{(l)}}{\partial h_{t-1}^{(l)}} \right) \left(\frac{\partial h_{t}^{(1)}}{\partial p_{i,t}} + \frac{\partial h_{t}^{(1)}}{\partial h_{t-1}^{(1)}} \right) \\ &= \frac{2\mu(E_{i} - E_{\text{bond}})}{I_{i}} \left(D_{i,t} + \frac{\partial D_{i,t}p_{i,t}}{\partial p_{i,t}} \right) \\ &- \delta(t) \frac{\partial D_{i,t}}{\partial p_{i,t}} \frac{1}{C_{t}} - \left(D_{i,t} + \frac{\partial D_{i,t}p_{i,t}}{\partial p_{i,t}} \right) \frac{1}{C_{1}} \\ &= W_{y} \frac{\partial \sigma}{\partial h_{t}^{(L)}} \prod_{l=2}^{L} \left(\frac{\partial \sigma}{\partial h_{t}^{(l-1)}} W_{p}^{(l)} + \frac{\partial \sigma}{\partial h_{t-1}^{(l)}} W_{h}^{(l)} \right) \\ &+ \left(\frac{\partial \sigma}{\partial p_{i,t}} W_{p}^{(1)} + \frac{\partial \sigma}{\partial h_{t-1}^{(1)}} W_{h}^{(1)} \right) \\ &\delta(t) = \begin{cases} 1, & \text{if } t \in \{\text{PeakHours}\} \\ 0, & \text{OTW} \end{cases} \end{split}$$

Convergence is dominated by neural network structure. Learned from the following literature, we prove the convergency of the whole algorithm

[1] Z. Allen-Zhu, Y. Li, and Z. Song, "On the convergence rate of training recurrent neural networks," Advances in neural information processing systems, vol. 32, 2019

[2] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, "Gradient descent finds global minima of deep neural networks," in International conference on machine learning. PMLR, 2019, pp. 1675–1685

Results

What is the performance of our method

Data and Results

Dataset

- ToU tariff and corresponding demand data come from the Low Carbon London project
- Time-varying tariff and corresponding base demand data comes from **ERCOT**, and the response demand data calculated by an **agent model**

$$\begin{split} \min_{\mathbf{D}_{r},\mathbf{D}_{s}} \ \boldsymbol{p}^{T} \boldsymbol{D} + c_{1} \boldsymbol{D}_{r}^{2} + c_{2} \boldsymbol{D}_{s}^{2} \\ \mathbf{D} = \boldsymbol{D}_{0} + \boldsymbol{D}_{r} + \boldsymbol{D}_{s} \\ \text{s.t.} \ \sum_{t \in T} D_{s,t} = 0 \\ \frac{D_{s}}{D_{r}} \leq \boldsymbol{D}_{s} \leq \overline{D_{s}} \\ D_{r} \leq \overline{D_{r}} \leq \overline{D_{r}} \end{split}$$

ToU tariff results

High-income consumers take high tariff, lowincome consumers take low tariff, almost keep the original tariff, avoiding negative effect in DR

Energy burden proportionally changes, i.e., high-income consumers' increase a little, while low-income consumers' benefit a lot

Time-varying tariff results

Behavior identification

Accuracy capture price response behavior

Equitable and efficient tariff

Slightly change for different group consumer

Energy burden under baseline & modified tariff

- Redistributed the energy burden among consumers ٠
- Provide protection to low-income consumers during DR ٠

Validation

- Variation in consumers' payment decrease with energy burden ٠
- Robustness peak demand reduction performance

Reference

- S. Burger, I. Schneider, A. Botterud, and I. Pérez-Arriaga, "Fair, equitable, and efficient tariffs in the presence of distributed energy resources," Consumer, Prosumer, Prosumager: How Service Innovations will Disrupt the Utility Business Model, p. 155, 2019.
- The Mercury News, "Pge monthly bills could jump for many customers due to new state law," <u>https://www.mercurynews.com/2023/04/12/pge-month-bill-jump-electric-gas-price-consumer-utility-income-economy/?clearUserState=true</u>.
- J. Drgoňa, A. R. Tuor, V. Chandan, and D. L. Vrabie, "Physics-constrained deep learning of multi-zone building thermal dynamics," Energy and Buildings, vol. 243, p. 110992, 2021.
- A. Drehobl, R. L., and A. R., "How high are household energy burdens," Washington, DC: American Council for an Energy-Efficient Economy, Tech. Rep., 2020.
- S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, "Gradient descent finds global minima of deep neural networks," in International conference on machine learning. PMLR, 2019, pp. 1675–1685.
- Z. Allen-Zhu, Y. Li, and Z. Song, "On the convergence rate of training recurrent neural networks," Advances in neural information processing systems, vol. 32, 2019

What will the future electricity prices look like :

- ToU or Time-varying tariffs, but need to reflect consumers' willingness to respond;
- Consumer-centric; effectively capture consumers' behavior;
- Address energy equity issues, especially for low-income consumers.

California started using high electricity prices (fixed parts) for high-income consumers

