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What will the future electricity prices
look like?
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e Methodology & Solution

e Results
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Background

Constant tariffs Time of Use (ToU) tariffs Time-varying tariffs
*  Flat prices over long time *  Predefined non-flat prices over long time *  Hourly different price
«  Generally high, low, normal * Incentive consumers’ flexible response
Price Price Price
A
D
Time Time Time
> > >

Challenges Equality issues

. . . . *  Allocatively equity: treat identical customers equall
*  Reflect wholesale market prices, distribution grid security yequity quatly

constraints, and consumers’ willingness to respond Distributionally equity: guarantee vulnerable customer

*  Current research mentions price design should reflect groups pay an acceptable amount for electricity service

equity, as DER integration will benefit or burden different *  Transitional equity: equity when transition from one
consumers tariff to another
Contributions:

[1] S. Burger, I. Schneider, A. Botterud, and |. Pérez-Arriaga, “Fair, equitable, and efficient
tariffs in the presence of distributed energy resources,” Consumer, Prosumer, Prosumager: . Design effective and equitab|e tariff
How Service Innovations will Disrupt the Utility Business Model, p. 155, 2019 X i i
[2] Cahana, M., Fabra, N., Reguant, M., & Wang, J. (2022). The distributional impacts of real- ® Ca ptu re price-response behavior and embedded social
time pricing.

demographics information of consumers
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Methodology

Equitable and effective tariff design model

Identification | h h . . | .
Trainin, [ ] - -
Leaming 0Dt L(p,0,D%) =% =15 Gp.D) Non-linear, |g’ dlmen§|ona , and determined by
model ¢ o e the consumer’s subjective preference.
 Taiis dmand |
i R _ ok | exibility | . . .
e DR = ) i Enery ey | « Two methods to identify the price response
Optimization t A S behavior:
(')pt:;:j:ltlon Op[ f(p, D’ [, 9) solution method p* (D’ 9)
2 s.t. hm(p)ﬁo Optimal tariff
Optimization Piece-wise linear model — ToU tariff

Energy burden = Electricity bill / Income
Low-income consumer energy burden

min @ . . .
o Neural network — Time-varying tariff
ot price difference

D; = Gi(p:|6:) Price response behavior
>iez DI'pi > C + Dj ;A Revenue recovery

> Diy <(1-8)) Doy, Vt € {PeakHours} Demand reduction target
1€l 1€l
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Methodology

Identification — ToU tariff

Identification — Time-varying tariff

Demand (kWh) Demand (kWh) /Pl ice response behavior
Price N
: : AD; AD AD; ADy
| i /I Output ¥; ¥ "
| |
| h | | i Hidd m + wo W0 + WO *
| | 1dden LE S U ¢ N Y wse
' | ' | // H ” ;0 wo WO o
i i : f v
! I ! I |
! I ! | Hidden . Lo ‘ W & w ‘ e
i ! I Price (e/kvh) i ! I Price (€(kuh) [ _> - _> _> NS S U i P
Low price Medium price  High price Low price Medium price High price / .
/ w, m W, (1\ w,0 . N N W,
(a) Actual price response (b) Linearized prices response G lnpllt .’ P Rt
‘\ Combination of activation function N N

. . . . \
* model price response behavior as a piece-wise \ G
linear model \ 5 5
\ ]

* Only low, medium, and high prices Feee F + -

\ r(]?f C r(p
\ eoe i
Demand | 7@; — | n iw}

change

if 0 < T4t < Tlows

if Tlow < Tt < T'med s

Di,t,max;
@it1 * it +biga,

D (mit) = min L = ||Gi(pil0) — DF3

@it 2 * Tt +biro, if Tmed < it < Thigh;
* Past price data
* Observed consumer demand in response to the

instructed prices

Di,t,lowa if Thigh S T4t
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Solution

Solution algorithm

ToU Tariff — The piecewise linear modeling method formulates a mix-integer non-linear
optimization model, which can be solved by GUROBI 9.5.2 directly

Time-varying tariff — The neural network modeling method formulates a non-linear

optimization problem with a quadratic objective and neural network structure constraints. We
propose a gradient-based solution algorithm with barrier functions to deal with constraints.

The gradient-based method with barrier function

0F, _0F, ( OE; 0D;, OE;

i 9¢m oD, 0D, v+ onY  on" \ (on" oV
— + + —_r= t t t t t t
. Opit OE; \OD;; Op;: 3Pi,t) ; Opi Opis 8h§L) zl:[ ah,gl’l) + on® Opi ¢ * oY
min Fo = puf + Z om(C) 2u(E; — Epond) 0D;1pi ~ L - '
Pi(1) meM =5 Di,t +—F do oo oo 1
I; Opi =W, 11 wi + w)
1\ 2 ) ¢ B¢ Y onD PYSCVMEs PYSOIME
= ;L(Z ([EL - E] ) + Cl”pi - AHZ) (11 _5(t)aDi'ti _ <Dit + aDi,tpi,t) i o 1=2 t t—1
i€l Opi Cy ’ Opit Cy 90 ) 0o )
+ > In(C) +1n(Cy) ot onY Wi
‘ ! 1, if ¢t € {PeakHours} ’ =t
te{PK} i) =
0, OTW
Co==) Diy+(1=B)*) Do, Vt € {PeakHours} Convergence is dominated by neural network structure. Learned from the
i€Z i€ . . .
12y  following literature, we prove the convergency of the whole algorithm
Ci=-Y_ D[pi+Djx (13)

[1] Z. Allen-Zhu, Y. Li, and Z. Song, “On the convergence rate of training recurrent neural networks,” Advances in neural
information processing systems, vol. 32, 2019

[2] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds global minima of deep neural networks,” in
International conference on machine learning. PMLR, 2019, pp. 1675-1685

i€l

9| Solution

&5 COLUMBIA | ENGINEERING

7N The Pu Foundation School of Enginecring and Applied Science



&5 COLUMBIA | ENGINEERING

TN The Fu Foundation School of Engineering and Applied Science




Data and Results

Dataset

* ToU tariff and corresponding demand data come
from the Low Carbon London project

* Time-varying tariff and corresponding base demand
data comes from ERCOT, and the response demand
data calculated by an agent model

. T ‘ ’
in p D + ¢1D? + ¢, D

D = D, + D, + Dq
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Energy burden (%)

Electricity price (€/kWh)
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ToU tariff results

e Response High-income user
:

50 60 70 80 90
Consumer

High-income consumers
take high tariff, low-
income consumers take
low tariff, almost keep
the original tariff,
avoiding negative effect
in DR

100

Baseline
Response
One price

© High-income consumer

Energy burden
proportionally changes,
i.e., high-income
consumers’ increase a
little, while low-income
consumers’ benefit a lot
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Time-varying tariff results

Behavior identification Energy burden under baseline & modified tariff
3.5 0.08
—— Prediction 0.4 o 0.4-
3r —— Agent ° ["]Energy burden ’ [ ]Energy burden
= 10.06 —~ 3 = Average AAvergge
§ 2.5 % §0.3 T © Cluster's income range §0'3 ; Cluster's income range
- = = [
2 70045 502 oL 302 3
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n 1 =~ 10.02 = L i
0.5 or ) 0
o ; ‘ ‘ ‘ 0 123456782910 12345678910
0 5 10 15 20 25 Group Group
Time . .
Accuracy capture price response behavior * Redistributed the energy burden among consumers
* Provide protection to low-income consumers during DR
Equitable and efficient tariff Validation
0.1 T 6f’1.4 0251 0%
—— Baseline tariff é
| |—High-income tariff | 2 ——Targe
AO 08 Low-income tariff §1 2 5
e g
0.06 - | S | 3o
i — % g
o Predicted
E 0.04r EH» 1 0.8 *'é:t;?e §
- — —— Baseline
0.02f == | N EEpE. 598
3 4 6 8 10
0 ‘ ‘ ‘ Group Peakhour
0 5 10 15 20 25 . . . .
Time * Variation in consumers’ payment decrease with energy burden
Slightly change for different group consumer * Robustness peak demand reduction performance
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Go back to the first question

What will the future electricity prices look like :
* ToU or Time-varying tariffs, but need to reflect consumers’ willingness to respond;
* Consumer-centric; effectively capture consumers’ behavior;

* Address energy equity issues, especially for low-income consumers.

California started using high electricity prices (fixed parts) for high-income consumers
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